
Find the volume of the solid generated by revolving the region bounded by y=2x, y=6, and x=0
about the y-axis (disk mathod)

Ответы на вопрос

Ответ:
hahahahahah 8
Объяснение:



To find the volume of the solid generated by revolving the region bounded by the curves y = 2x, y = 6, and x = 0 about the y-axis using the disk method, you need to integrate the cross-sectional areas of the infinitesimally thin disks formed by revolving the region.
Here's the general formula for the disk method:
In this case, we'll use the y-values to integrate since the region is bounded by y-values.
Given the curves y = 2x and y = 6, let's first find the y-values where they intersect:
So, the region of interest lies between y = 2x and y = 6, and the interval for integration is .
Now, we can express x in terms of y: .
The cross-sectional area of each infinitesimally thin disk at height y is the area of a circle with radius , which is , squared:
Now, integrate the cross-sectional areas from y = 0 to y = 6:
Integrate:
So, the volume of the solid generated by revolving the given region about the y-axis is cubic units.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili