Вопрос задан 02.07.2023 в 12:17. Предмет Алгебра. Спрашивает Аникин Лёха.

Выберите из указанных алгебраических выражений многочлен и определите его степень: A) 8a25cxy3B)

7a+3dc3C) 6z(-3xd2)​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жуков Степан.

Объяснение:

B) остальные одночлены, степень 4:

dccc - 4 буквенных множителя)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Многочлен - это алгебраическое выражение, состоящее из переменных и коэффициентов, объединенных операциями сложения и умножения. Многочлены имеют только неотрицательные целые степени переменных.

Из предложенных алгебраических выражений многочленами являются:

A) 8a^25cxy^3 (многочлен относительно переменных a, c, x, y) B) 7a + 3dc^3 (многочлен относительно переменных a, d, c) C) 6z(-3xd^2) (не является многочленом из-за отрицательной степени переменной z)

Теперь определим степени данных многочленов:

A) 8a^25cxy^3 - Степень данного многочлена равна 25 (по степени переменной a), так как это наивысшая степень переменной в данном многочлене.

B) 7a + 3dc^3 - Степень данного многочлена равна 1 (по степени переменной a), так как это наивысшая степень переменной в данном многочлене.

C) 6z(-3xd^2) - Это выражение не является многочленом из-за отрицательной степени переменной z. Многочлены не могут содержать переменные с отрицательными степенями.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос