Вопрос задан 30.06.2023 в 13:37. Предмет Алгебра. Спрашивает Ярош Андрей.

Найдите координаты точек пересечения прямых y=-x-2 и y=x-8

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гашишев Дмитрий.

Ответ:

( 3 ; -5 )

Объяснение:

y=-x-2

y=x-8

-x-2=x-8

-x-x=-8+2

-2x=-6

x=3

y=x-8

y= 3-8

y= -5

0 0
Отвечает Ким Нургуль.

Ответ:файл

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения координат точек пересечения прямых y = -x - 2 и y = x - 8, нужно приравнять выражения для y и решить получившееся уравнение относительно x:

  1. Поставим y на обеих сторонах равенства:

    -x - 2 = x - 8

  2. Теперь прибавим x к обеим сторонам и выразим x:

    -x + x - 2 = x + x - 8 -2 = 2x - 8

  3. Прибавим 8 к обеим сторонам:

    -2 + 8 = 2x - 8 + 8 6 = 2x

  4. Разделим обе стороны на 2:

    6 / 2 = 2x / 2 3 = x

Теперь, когда мы знаем x, можем найти соответствующие значения y, подставив x обратно в одно из исходных уравнений, например, в y = -x - 2:

y = -(3) - 2 y = -3 - 2 y = -5

Итак, координаты точки пересечения этих двух прямых:

x = 3 y = -5

Точка пересечения имеет координаты (3, -5).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос