
Log2(x+1)+log2(x+3)=3 log3x2-log3x3=-2


Ответы на вопрос




To solve the given equations, let's start with the first equation:
log2(x + 1) + log2(x + 3) = 3
We can use the logarithmic properties to simplify this equation. According to the logarithmic property, the sum of logarithms is equal to the logarithm of the product:
log2[(x + 1)(x + 3)] = 3
Now we can rewrite the equation in exponential form:
2^3 = (x + 1)(x + 3)
8 = (x + 1)(x + 3)
Expanding the right side of the equation:
8 = x^2 + 4x + 3
Rearranging the terms:
x^2 + 4x + 3 - 8 = 0
x^2 + 4x - 5 = 0
Now we can solve this quadratic equation by factoring or using the quadratic formula. Factoring the equation, we find:
(x + 5)(x - 1) = 0
This gives us two possible solutions:
x + 5 = 0 => x = -5 x - 1 = 0 => x = 1
So the solutions to the first equation are x = -5 and x = 1.
Moving on to the second equation:
log3(x^2) - log3(x^3) = -2
Using the logarithmic property, we can simplify the equation:
log3(x^2 / x^3) = -2
log3(1/x) = -2
Now, let's convert this equation to exponential form:
3^(-2) = 1/x
1/9 = 1/x
Cross-multiplying:
9x = 1
x = 1/9
Therefore, the solution to the second equation is x = 1/9.
To summarize, the solutions to the given equations are:
- x = -5
- x = 1
- x = 1/9


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili