Вопрос задан 27.06.2023 в 17:36. Предмет Алгебра. Спрашивает Антонюкова Анастасия.

Упростите выражение: sin 2a*tg a

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Никоноров Алексей.

Sin 2a*tg a=2*sin a*cos a* sin a/cos a=2*sin^2a

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте упростим выражение:

sin(2a * tg(a))

Сначала вспомним, что tg(a) - это тоже самое, что и tan(a), что обозначает тангенс угла a.

Используя тригонометрические идентичности, мы можем упростить данное выражение:

sin(2a * tan(a)) = 2 * sin(a) * sin(a) / (cos(a) * cos(a))

Теперь давайте упростим числитель:

2 * sin(a) * sin(a) = 2 * sin^2(a)

А знаменатель останется таким же:

cos(a) * cos(a) = cos^2(a)

Итак, у нас есть следующее упрощенное выражение:

2 * sin^2(a) / cos^2(a)

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос