Вопрос задан 26.06.2023 в 15:33. Предмет Алгебра. Спрашивает Куриляк Олексій.

1) x² - 7x-30<02) 4x²+16x>0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Морозов Савелий.

Ответ:

Метод интервалов во 2 номере


0 0
Отвечает Гавриленко Даша.

Ответ:

1)x=(-3;10)

2)x=(-00;-4)U(0;+00)

 \infty

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these inequalities, let's start with each one separately:

  1. x27x30<0x^2 - 7x - 30 < 0

First, factor the quadratic:

x27x30=(x10)(x+3)x^2 - 7x - 30 = (x - 10)(x + 3)

Now, set each factor equal to zero and solve for xx:

x10=0x - 10 = 0 or x+3=0x + 3 = 0

x=10x = 10 or x=3x = -3

These are the critical points. Now, create a number line and test the intervals between these critical points:

  • Interval 1: -\infty to 3-3

    • Choose a test point within this interval, for example, x=4x = -4.
    • Plug it into the original inequality: (410)(4+3)<0(-4 - 10)(-4 + 3) < 0
    • Simplify: (14)(1)<0(-14)(-1) < 0
    • Since the product of two negative numbers is positive, this interval is part of the solution.
  • Interval 2: 3-3 to 1010

    • Choose a test point within this interval, for example, x=0x = 0.
    • Plug it into the original inequality: (010)(0+3)<0(0 - 10)(0 + 3) < 0
    • Simplify: (10)(3)<0(-10)(3) < 0
    • Since the product of a negative number and a positive number is negative, this interval is part of the solution.
  • Interval 3: 1010 to ++\infty

    • Choose a test point within this interval, for example, x=11x = 11.
    • Plug it into the original inequality: (1110)(11+3)<0(11 - 10)(11 + 3) < 0
    • Simplify: (1)(14)<0(1)(14) < 0
    • Since the product of a positive number and a positive number is positive, this interval is not part of the solution.

Now, combine the intervals where the inequality is true:

x(,3)(3,10)x \in (-\infty, -3) \cup (-3, 10)

So, the solution to x27x30<0x^2 - 7x - 30 < 0 is x(,3)(3,10)x \in (-\infty, -3) \cup (-3, 10).


  1. 4x2+16x>04x^2 + 16x > 0

First, factor out the common factor of 4:

4x2+16x=4x(x+4)4x^2 + 16x = 4x(x + 4)

Now, consider the factors separately:

Factor 1: 4x4x

Factor 2: x+4x + 4

Now, set each factor equal to zero and solve for xx:

Factor 1: 4x=04x = 0 x=0x = 0

Factor 2: x+4=0x + 4 = 0 x=4x = -4

These are the critical points. Now, create a number line and test the intervals between these critical points:

  • Interval 1: -\infty to 4-4

    • Choose a test point within this interval, for example, x=5x = -5.
    • Plug it into the original inequality: 4(5)(5+4)>04(-5)(-5 + 4) > 0
    • Simplify: 4(5)(1)>04(-5)(-1) > 0
    • Since the product of two negative numbers is positive, this interval is part of the solution.
  • Interval 2: 4-4 to 00

    • Choose a test point within this interval, for example, x=2x = -2.
    • Plug it into the original inequality: 4(2)(2+4)>04(-2)(-2 + 4) > 0
    • Simplify: 4(2)(2)>04(-2)(2) > 0
    • Since the product of a negative number and a positive number is negative, this interval is not part of the solution.
  • Interval 3: 00 to ++\infty

    • Choose a test point within this interval, for example, x=1x = 1.
    • Plug it into the original inequality: 4(1)(1+4)>04(1)(1 + 4) > 0
    • Simplify: 4(1)(5)>04(1)(5) > 0
    • Since the product of two positive numbers is positive, this interval is part of the solution.

Now, combine the intervals where the inequality is true:

x(,4)(0,+)x \in (-\infty, -4) \cup (0, +\infty)

So, the solution to 4x2+16x>04x^2 + 16x > 0 is x(,4)(0,+)x \in (-\infty, -4) \cup (0, +\infty).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос