 
1) x² - 7x-30<02) 4x²+16x>0
 0
        0
         0
        0
    Ответы на вопрос
 
        Ответ:
Метод интервалов во 2 номере

 0
                    0
                     0
                    0
                 
        Ответ:
1)x=(-3;10)
2)x=(-00;-4)U(0;+00)
 0
                    0
                     0
                    0
                 
            To solve these inequalities, let's start with each one separately:
First, factor the quadratic:
Now, set each factor equal to zero and solve for :
or
or
These are the critical points. Now, create a number line and test the intervals between these critical points:
- Interval 1: to - Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of two negative numbers is positive, this interval is part of the solution.
 
- Interval 2: to - Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of a negative number and a positive number is negative, this interval is part of the solution.
 
- Interval 3: to - Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of a positive number and a positive number is positive, this interval is not part of the solution.
 
Now, combine the intervals where the inequality is true:
So, the solution to is .
First, factor out the common factor of 4:
Now, consider the factors separately:
Factor 1:
Factor 2:
Now, set each factor equal to zero and solve for :
Factor 1:
Factor 2:
These are the critical points. Now, create a number line and test the intervals between these critical points:
- Interval 1: to - Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of two negative numbers is positive, this interval is part of the solution.
 
- Interval 2: to - Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of a negative number and a positive number is negative, this interval is not part of the solution.
 
- Interval 3: to - Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of two positive numbers is positive, this interval is part of the solution.
 
Now, combine the intervals where the inequality is true:
So, the solution to is .
 0
                    0
                     0
                    0
                Похожие вопросы
 
			Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			