
1) x² - 7x-30<02) 4x²+16x>0


Ответы на вопрос

Ответ:
Метод интервалов во 2 номере




Ответ:
1)x=(-3;10)
2)x=(-00;-4)U(0;+00)



To solve these inequalities, let's start with each one separately:
First, factor the quadratic:
Now, set each factor equal to zero and solve for :
or
or
These are the critical points. Now, create a number line and test the intervals between these critical points:
Interval 1: to
- Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of two negative numbers is positive, this interval is part of the solution.
Interval 2: to
- Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of a negative number and a positive number is negative, this interval is part of the solution.
Interval 3: to
- Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of a positive number and a positive number is positive, this interval is not part of the solution.
Now, combine the intervals where the inequality is true:
So, the solution to is .
First, factor out the common factor of 4:
Now, consider the factors separately:
Factor 1:
Factor 2:
Now, set each factor equal to zero and solve for :
Factor 1:
Factor 2:
These are the critical points. Now, create a number line and test the intervals between these critical points:
Interval 1: to
- Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of two negative numbers is positive, this interval is part of the solution.
Interval 2: to
- Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of a negative number and a positive number is negative, this interval is not part of the solution.
Interval 3: to
- Choose a test point within this interval, for example, .
- Plug it into the original inequality:
- Simplify:
- Since the product of two positive numbers is positive, this interval is part of the solution.
Now, combine the intervals where the inequality is true:
So, the solution to is .


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili