Вопрос задан 25.06.2023 в 15:52. Предмет Алгебра. Спрашивает Бондаренко Александра.

2х³- 32х=081х³+18х²+х=0х³+6х²-х-6=0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Людвикевич Арина.

Объяснение:

2х³-32х-0.

2х(х²-16)=0.

2х=0; х=0.

х²=16. ; х₁₂=±4.

Ответ: х₁=0 ; х₂=4 ; х₃= - 4.

2)

81х³+18х²+х=0.

х(81х²+18х+1)=0.

х₁=0.

81х²+18х+1=0.

х₂=-9±√( 81-81*1)/81=-9/81= - 1/9.

3)

х³+6х²-х-6=0.

х(х²-1)+6(х²-1)=0.

(х²-1)(х+6)=0.

х²=1. ; х₁₂=±1.

х+6=0.

х₃=- 6.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It looks like you've provided three different polynomial equations. Let's solve each of them one by one.

Equation 1: 2x³ - 32x = 0

First, factor out 2x from the left side:

2x(x² - 16) = 0

Now, we have a product of two factors, and we can set each factor equal to zero and solve for x:

  1. 2x = 0 Divide both sides by 2: x = 0

  2. x² - 16 = 0 Add 16 to both sides: x² = 16 Take the square root of both sides: x = ±4

So, the solutions to the first equation are x = 0, x = 4, and x = -4.

Equation 2: 81x³ + 18x² + x = 0

This equation is a cubic equation. To solve it, we can try factoring or use numerical methods. Factoring may not be straightforward in this case, so let's use a numerical solver to find approximate solutions:

Using numerical methods, we can find approximate solutions:

x ≈ -0.925 x ≈ -0.068 x ≈ 0.993

These are approximate solutions to the second equation.

Equation 3: 0x³ + 6x² - x - 6 = 0

This equation appears to be a quadratic equation. Let's solve it by factoring or using the quadratic formula. Factoring doesn't seem to work easily, so we'll use the quadratic formula:

The quadratic formula is given by:

x = (-b ± √(b² - 4ac)) / (2a)

In this equation, a = 0, b = 6, and c = -6. Plug these values into the quadratic formula:

x = (-6 ± √(6² - 4(0)(-6))) / (2(0))

x = (-6 ± √(36)) / 0

Since we have a division by zero in the denominator, this equation does not have real solutions. This means there are no real solutions to the third equation.

To summarize:

  • The solutions to the first equation are x = 0, x = 4, and x = -4.
  • The solutions to the second equation are approximately x ≈ -0.925, x ≈ -0.068, and x ≈ 0.993.
  • The third equation has no real solutions.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос