
Sin4x cos4x > -1/4Решите, пожалуйста, с окружностью


Ответы на вопрос

Ответ:
решение смотри на фотографии




Для решения неравенства sin(4x) * cos(4x) > -1/4
с окружностью, мы можем использовать тригонометрические тождества. Для начала, давайте применим тождество:
sin(2θ) * cos(2θ) = 0.5 * sin(4θ)
Теперь мы можем переписать наше исходное неравенство следующим образом:
2 * sin(2x) * cos(2x) > -1/4
Теперь давайте рассмотрим окружность в декартовой системе координат, где x
и y
- это координаты точки на окружности. Радиус окружности равен 1.
Тригонометрические тождества могут быть полезными для нахождения значения sin(2x)
и cos(2x)
:
sin(2x) = 2 * sin(x) * cos(x)
cos(2x) = cos^2(x) - sin^2(x)
Так как радиус окружности равен 1, то:
x = cos(x)
Теперь мы можем переписать наше неравенство:
2 * x * x > -1/4
Умножив обе стороны на 2:
4 * x^2 > -1/4
Инвертируем знак неравенства:
-4 * x^2 < 1/4
Теперь давайте разделим обе стороны на -4. Не забудем инвертировать знак при делении на отрицательное число:
x^2 < -1/16
Теперь извлечем квадратный корень:
|x| < sqrt(-1/16)
Так как квадратный корень из отрицательного числа не имеет действительных решений, это неравенство не имеет решений на действительной числовой прямой. Следовательно, данное неравенство sin(4x) * cos(4x) > -1/4
не имеет решений на окружности в действительных числах.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili