Вопрос задан 24.06.2023 в 08:21. Предмет Алгебра. Спрашивает Швайка Женя.

Найти точки экстремума функции y=-4x^2+6x^2 срочно.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чурилова Ксения.

Ответ:

(0; 0).

Объяснение:

Данная функция y = -4x^2 + 6x^2 является квадратичной функцией (многочлен второй степени) и задаёт квадратичную параболу. Как известно, у такой функции может быть лишь один экстремум, находящийся в вершине параболы.

Упростим исходную функцию: y = 6x^2 - 4x^2 = 2x^2.

Для нахождения x единственного экстремума воспользуемся производной: y' = (2x^2)' = 2(x^2)' = 2\cdot 2x = 4x.

По лемме Ферма, значение производной от x экстремума нулевое. Таким образом, x точки экстремума будет решением 4x = 0.

4x= 0;\\x = 0.

Для нахождения y точки экстремума вычислим значение исходной функции от найденного x:

2\cdot 0^2 = 2 \cdot 0 = 0.

Получается, что координаты точки экстремума это (0; 0).

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

[G]

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос