Вопрос задан 23.06.2023 в 11:49. Предмет Алгебра. Спрашивает Вадимна Вера.

7. (1 бал) Знайти суму нескінченої геометричної прогресії: 24;-12;6;.А16Б36В48Г12​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смолярчук Сергей.

Відповідь:

А) 16

Пояснення:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження суми нескінченої геометричної прогресії, вам потрібно знати перший член (a) та спільний знаменник (r). У даній послідовності перший член a = 24, а знаменник можна знайти як відношення другого члена до першого, тобто r = (-12) / 24 = -1/2.

Формула для обчислення суми нескінченої геометричної прогресії має вигляд:

S = a / (1 - r)

У вашому випадку:

S = 24 / (1 - (-1/2)) = 24 / (1 + 1/2) = 24 / (3/2) = 24 * (2/3) = 16

Отже, сума цієї нескінченої геометричної прогресії дорівнює 16.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос