
Розв'язати нерівності 1)4≥ 16^x+12)(√7)^х ≤ 1/493)2^х^2 - 9х + 17,5 > √2/84) (3/2)^х < -35)
(0,25)^4-х ≤ 16/2^х-26) 4^х - 6*2^х-1 > 4

Ответы на вопрос

Объяснение:
решение во вложении......




- 4 ≥ (16^x)(7^(x)) ≤ 1/49
To solve this inequality, first notice that 4 and 1/49 are powers of 2 (2^2 and 1/7^2). We can rewrite the inequality as:
2^2 ≥ (2^4)^x * (7^x) ≥ (1/7^2)
Now, we can use the properties of exponents to simplify the inequality:
2^2 ≥ 2^(4x) * 7^x ≥ 1/7^2
Now, we can compare the exponents and solve for x:
2 ≥ 4x 1/7^2 ≤ 7^x
- x ≤ 1/2
- x ≥ -2
So, the solution to the inequality is: -2 ≤ x ≤ 1/2
- 2^x^2 - 9x + 17.5 > √2/8
To solve this inequality, you can first simplify it:
2^x^2 - 9x + 17.5 > √2/8
Now, let's convert √2/8 into its exponential form:
√2/8 = 2^(1/2) / 2^3 = 2^((1/2) - 3) = 2^(-5/2)
So, the inequality becomes:
2^x^2 - 9x + 17.5 > 2^(-5/2)
Now, you can set both sides of the inequality with the same base and compare exponents:
2^x^2 - 9x + 17.5 > 2^(-5/2)
x^2 - (9/2)x + 17.5 > -5/2
x^2 - (9/2)x + 17.5 + 5/2 > 0
x^2 - (9/2)x + 11 > 0
To solve this quadratic inequality, you can use the quadratic formula:
x = [9/2 ± √((9/2)^2 - 4111)] / (2*1)
x = [9/2 ± √(81/4 - 44)] / 2
x = [9/2 ± √(81/4 - 176/4)] / 2
x = [9/2 ± √(-95/4)] / 2
Since the discriminant is negative, there are no real solutions to this quadratic inequality. Therefore, the inequality has no solution in real numbers.
- (3/2)^x < -3
To solve this inequality, we can rewrite it as:
(2/3)^x > 3
Now, let's take the natural logarithm (ln) of both sides of the inequality to solve for x:
ln((2/3)^x) > ln(3)
Using the properties of logarithms, we can move the exponent x down:
x * ln(2/3) > ln(3)
Now, divide both sides by ln(2/3):
x > ln(3) / ln(2/3)
You can calculate the approximate value of x using a calculator:
x > -1.63093
So, the solution to the inequality is x > -1.63093.
- (0.25)^(4-x) ≤ 16 / 2^x-2
To solve this inequality, first, simplify the right side:
(0.25)^(4-x) ≤ 16 / (2^(x-2))
Now, rewrite 16 as a power of 2 (2^4):
(0.25)^(4-x) ≤ (2^4) / (2^(x-2))
Using the properties of exponents, we can rewrite the right side:
(0.25)^(4-x) ≤ 2^(4 - (x-2))
Simplify further:
(0.25)^(4-x) ≤ 2^(6-x)
Now, both sides have the same base (0.25 and 2), so we can compare exponents:
4-x ≤ 6-x
Now, subtract 4-x from both sides:
0 ≤ 2
Since 0 is always less than or equal to 2, the inequality is true for all values of x.
- 4^x - 6 * 2^(x-1) > 4
First, let's notice that 4 is also a power of 2 (2^2). We can rewrite the inequality as:
2^(2x) - 6 * 2^(x-1) > 2^2
Now, we can use properties of exponents:
2^(2x) - 6 * (2^x/2) > 2^2
Simplify further:
2^(2x) - 3 * 2^x > 2^2
Now, let's introduce a substitution. Let y = 2^x. The inequality becomes:
y^2 - 3y > 4
Rearrange the inequality:
y^2 - 3y - 4 > 0
Now, you can factor the left side of the inequality:
(y - 4)(y + 1) > 0
Now, find the values of y that make the inequality true by considering the signs of each factor:
- y - 4 > 0 => y > 4
- y + 1 > 0 => y > -1
So, the solution is y > 4 and y > -1. Since y = 2^x, the solution in terms of x is:
2^x > 4 and 2^x > -1
The condition 2^x > -1 always holds true, so we only need to consider 2^x > 4:
2^x > 4
To solve this, take the logarithm of both sides:
x * ln(2) > ln(4)
x * 0.6931 > 1.3863
x > 1.3863 / 0.6931
x > 2
So, the solution to the inequality is x > 2.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili