Вопрос задан 22.06.2023 в 12:49. Предмет Алгебра. Спрашивает Рогов Паша.

Если x/y=d, y/z=1/d то чему равно x/z?​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кудайберген Нурлан.

Ответ:

d^2

Объяснение:

x=dy z=y/d рад если помог можно луч ответ

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления x/z, мы можем воспользоваться данными уравнениями:

  1. x/y = d
  2. y/z = 1/d

Для начала решим уравнение (1) относительно x:

x = d * y

Теперь мы можем подставить это значение в уравнение (2):

(d * y)/z = 1/d

Теперь умножим обе стороны уравнения на z и на d:

d * y = z/d

Теперь решим это уравнение относительно z:

z = d^2 * y

Теперь, чтобы найти x/z, мы можем подставить значение x и z:

x/z = (d * y)/(d^2 * y)

y сокращается на обеих сторонах:

x/z = (d * 1)/(d^2 * 1)

Теперь у нас остается:

x/z = 1/d

Итак, x/z равно 1/d.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос