Вопрос задан 22.06.2023 в 08:17. Предмет Алгебра. Спрашивает Касумова Диана.

Сума двох чисел дорівнює 10, а їх добуток 21. Якщо перше число позначити через х, а друге через

у, то цю умову задовольняє система рiвнянь.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гомон Лара.

Ответ:

x=7; y=3

Объяснение:

X+Y=10    7+3=10

X*Y=21      7*3=21

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте вирішимо цю систему рівнянь.

Маємо дві невідомі - xx і yy. За умовою маємо дві інформації:

  1. x+y=10x + y = 10
  2. xy=21xy = 21

Щоб вирішити цю систему, можна використовувати метод підстановки або метод елімінації.

Метод елімінації:

З рівняння x+y=10x + y = 10, можна виразити xx як x=10yx = 10 - y.

Підставимо це значення xx у друге рівняння:

(10y)y=21(10 - y)y = 21

Розв'яжемо це квадратне рівняння:

10yy2=2110y - y^2 = 21

Перенесемо всі члени на одну сторону:

y210y+21=0y^2 - 10y + 21 = 0

Розкладемо це квадратне рівняння на множники:

(y7)(y3)=0(y - 7)(y - 3) = 0

Звідси отримуємо дві можливі відповіді для yy:

  1. y7=0y=7y - 7 = 0 \Rightarrow y = 7
  2. y3=0y=3y - 3 = 0 \Rightarrow y = 3

Тепер, знаючи значення yy, можемо знайти відповідні значення xx:

  1. Якщо y=7y = 7, то x=10y=107=3x = 10 - y = 10 - 7 = 3
  2. Якщо y=3y = 3, то x=10y=103=7x = 10 - y = 10 - 3 = 7

Отже, система має два набори розв'язків: (x,y)=(3,7)(x, y) = (3, 7) або (x,y)=(7,3)(x, y) = (7, 3).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос