
((1+tnA)(1-ctgA))^2=1/(sin^2Acos^2A)-4


Ответы на вопрос

Ответ:
((1+tnA)(1-ctgA))^2=1/(sin^2Acos^2A)-4=5



Let's simplify the given expression step by step:
Starting with the left side of the equation:
((1 + tnA)(1 - ctgA))^2
First, we need to recall some trigonometric identities:
- tan(A) = sin(A) / cos(A)
- cot(A) = 1 / tan(A) = cos(A) / sin(A)
Now, we can rewrite the expression using these identities:
((1 + sin(A)/cos(A))(1 - cos(A)/sin(A)))^2
Now, let's simplify further:
((cos(A) + sin(A))/cos(A))(1 - cos(A)/sin(A)))^2
Now, let's combine the fractions:
((cos(A) + sin(A))(sin(A) - cos(A))/ (cos(A)sin(A)))^2
Now, expand the square:
((cos(A) + sin(A))(sin(A) - cos(A))^2/ (cos(A)sin(A))^2
Now, let's simplify the right side of the equation:
1/(sin^2(A)cos^2(A)) - 4
Now, we need to find a common denominator for the fractions in the equation:
(sin^2(A)cos^2(A)/(sin^2(A)cos^2(A)) - 4(sin^2(A)cos^2(A)/(sin^2(A)cos^2(A)))
Now, combine the fractions:
(1 - 4sin^2(A)cos^2(A)/(sin^2(A)cos^2(A)))
Now, simplify the right side:
1 - 4
So, the right side simplifies to -3.
Now, the equation becomes:
((cos(A) + sin(A))(sin(A) - cos(A))^2/ (cos(A)sin(A))^2 = -3
We can further simplify this expression, but it doesn't seem to lead to a simple, obvious identity. The equation represents a trigonometric relationship, but it doesn't simplify to a well-known trigonometric identity. If you have a specific question or context related to this equation, please provide more details, and I'll do my best to assist you further.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili