
[tex]\left \{ {{x^{2} + y^{2} =225} \atop {x^{2} - y^{2} =63}} \right.\\[tex]


Ответы на вопрос

Ответ:
(12;9), (-12;9), (12;-9), (-12;-9)
Объяснение:
Суммируем уравнения:
2x²=288
x²=144
x=±12
Если из первого уравнения вычесть второе, то получим
2y²=162
y²=81
y=±9



To find the solution to the system of equations:
You can solve this system of equations by using the method of substitution. First, we can rewrite the second equation in terms of either or and then substitute it into the first equation. Let's solve for in terms of using the second equation:
Now, add to both sides of the equation to isolate :
Now, substitute this expression for into the first equation:
Combine like terms:
Add 63 to both sides:
Now, divide by 2 to isolate :
Now, take the square root of both sides to solve for :
Now that we have found the values of , we can use these values to find the corresponding values of using the equation :
For :
So,
For :
So,
So, the solution to the system of equations is:


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili