
5/х-3>=1 треба вирішити нерівність


Ответы на вопрос

Відповідь:



Для розв'язання нерівності 5/х-3>=1, спочатку перенесемо всі терміни на одну сторону рівності:
5/х - 3 - 1 >= 0
5/х - 4 >= 0
Тепер знайдемо значення х, при яких ця нерівність виконується. Для цього розглянемо два випадки:
1. Якщо х > 0: - Помножимо обидві частини нерівності на х, щоб позбутися від знаменника: 5 - 4х >= 0 - Перенесемо -4х на ліву сторону: 5 >= 4х - Розділимо обидві частини на 4 (при цьому знак нерівності не зміниться, оскільки 4 > 0): 5/4 >= х - Отже, для х > 0, нерівність виконується при х >= 5/4.
2. Якщо х < 0: - Помножимо обидві частини нерівності на х, але змінимо знак нерівності, оскільки х < 0: 5 - 4х <= 0 - Перенесемо -4х на ліву сторону: 5 <= 4х - Розділимо обидві частини на 4 (при цьому знак нерівності зміниться, оскільки 4 < 0): 5/4 <= х - Отже, для х < 0, нерівність виконується при х <= 5/4.
Таким чином, розв'язком нерівності 5/х-3>=1 є х >= 5/4 або х <= 5/4.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili