Вопрос задан 18.06.2023 в 15:24. Предмет Алгебра. Спрашивает Раковиненко Елизавета.

Помогите пожалуйста с заданием. Найдите корень уравнения (1/2)^18-3x=64

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Копылова Алёна.

\displaystyle\bigg(\frac{1}{2}\bigg)^{18-3x}=64;\\\bigg(2^{-1}\bigg)^{18-3x}=2^6;\\2^{-18+3x}=2^6\Rightarrow\\-18+3x=6;\\3x=6+18;\\3x=24;\\x=24:3;\\\boxed{x=8} .

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти корень уравнения, нужно решить его относительно переменной x.

Имеем уравнение: (1/2)^18 - 3x = 64

Сначала приведем его к более удобному виду, избавившись от дроби. Возведем 1/2 в 18-ю степень:

(1/2)^18 = 1/(2^18) = 1/262144

Теперь уравнение принимает вид: 1/262144 - 3x = 64

Перенесем 1/262144 на другую сторону уравнения:

-3x = 64 - 1/262144

Чтобы избавиться от отрицательного коэффициента перед x, домножим обе части уравнения на -1:

3x = 1/262144 - 64

Теперь найдем общий знаменатель для числителя и знаменателя в правой части уравнения:

1/262144 = (1 * 262144) / (262144 * 262144) = 262144 / 68719476736

Подставим полученное значение в уравнение:

3x = 262144 / 68719476736 - 64

Для удобства вычислений приведем 64 к общему знаменателю:

3x = 262144 / 68719476736 - 64 * (68719476736 / 68719476736)

3x = 262144 / 68719476736 - 4398046511104 / 68719476736

3x = (262144 - 4398046511104) / 68719476736

3x = -4397784360960 / 68719476736

Теперь разделим числитель на знаменатель:

3x = -64

Теперь разделим обе части уравнения на 3:

x = -64 / 3

Итак, корень уравнения (1/2)^18 - 3x = 64 равен x = -64/3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос