Вопрос задан 17.06.2023 в 19:10. Предмет Алгебра. Спрашивает Зеленская Настена.

Решите уравнение x в квадрате=11x Если уравнение имеет несколько корней, в ответе укажите меньший

из его корней.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шабардина Дарья.

Ответ:

0

Объяснение:

x²=11x , переносом всё влево:

x²-11x=0 , выносим х:

x×(x-11)=0

x=0 или

x-11=0 —> x=11

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения x^2 = 11x, мы должны привести его к одной стороне и получить квадратное уравнение. Затем мы можем использовать квадратные формулы или факторизацию, чтобы найти корни.

Используя квадратные формулы:

Перепишем уравнение в виде x^2 - 11x = 0. Теперь мы можем использовать квадратные формулы, которые выглядят следующим образом: х = (-b ± √(b^2 - 4ac)) / 2a

В нашем уравнении a = 1, b = -11 и c = 0. Подставим эти значения в формулу: x = (-(-11) ± √((-11)^2 - 4(1)(0))) / (2(1)) x = (11 ± √(121 - 0)) / 2 x = (11 ± √121) / 2 x = (11 ± 11) / 2

Теперь у нас есть два возможных значения для x: x1 = (11 + 11) / 2 = 22 / 2 = 11 x2 = (11 - 11) / 2 = 0 / 2 = 0

Таким образом, уравнение x^2 = 11x имеет два корня: x = 11 и x = 0.

Ответ: Меньший из корней уравнения x^2 = 11x - это x = 0.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос