
Прямая y=kx+b проходит через точки V(6,18) и W(-3,--9) напишите уравнение этой прямой.


Ответы на вопрос

Ответ:
y=3x
Объяснение:
Прямая y=kx+b проходит через точку V(6;18). Первое число - x, второе - y. Подставим значения:
18=6k+b
Найдем k и b. Пусть k=3. Тогда b=18-6×3=18-18=0
y=3x+0
y=3x
Проверим
Точка W(-3;-9). Подставим значения:
-9=-3×3=-9
-9=-9
Значит, уравнение прямой: y=3x



Чтобы найти уравнение прямой, проходящей через точки V(6,18) и W(-3,-9), мы можем использовать формулу наклона (k) и начального значения (b).
Наклон (k) можно найти, используя разницу в координатах по оси y и разницу в координатах по оси x между двумя точками.
k = (y2 - y1) / (x2 - x1)
В нашем случае:
x1 = 6 y1 = 18 x2 = -3 y2 = -9
k = (-9 - 18) / (-3 - 6) = -27 / -9 = 3
Теперь, когда у нас есть значение наклона (k), мы можем использовать одну из точек для определения значения b.
Выберем точку V(6,18):
y = kx + b 18 = 3 * 6 + b 18 = 18 + b
b = 0
Таким образом, уравнение прямой, проходящей через точки V(6,18) и W(-3,-9), будет:
y = 3x + 0
Или, более просто:
y = 3x


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili