
СкиеInУрок 2Упрости: cosa cos7а + sin7a sin7α.ответ.


Ответы на вопрос

Sin7a Cosa + Cos7aSina=Sin(7a+a)=Sin8a



To simplify the expression cosa cos7a + sin7a sin7α, we can use the trigonometric identity known as the cosine of the difference formula. This formula states that:
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
In our case, we have cosa cos7a + sin7a sin7α, which is similar to the cosine of the difference formula. We can rewrite it as:
cos(a - 7a) = cos(a) cos(7a) + sin(a) sin(7a)
Simplifying further, we have:
cos(-6a) = cos(a) cos(7a) + sin(a) sin(7a)
Since the cosine function is an even function, we know that cos(-x) = cos(x). Therefore, we can rewrite the equation as:
cos(6a) = cos(a) cos(7a) + sin(a) sin(7a)
Now, let's compare this equation with the cosine of the difference formula:
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
We can see that x = 6a and y = a. Therefore, we can rewrite the equation as:
cos(6a - a) = cos(6a) cos(a) + sin(6a) sin(a)
Simplifying further, we have:
cos(5a) = cos(6a) cos(a) + sin(6a) sin(a)
Now, let's compare this equation with the cosine of the difference formula:
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
We can see that x = 5a and y = a. Therefore, we can rewrite the equation as:
cos(5a - a) = cos(5a) cos(a) + sin(5a) sin(a)
Simplifying further, we have:
cos(4a) = cos(5a) cos(a) + sin(5a) sin(a)
Again, let's compare this equation with the cosine of the difference formula:
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
We can see that x = 4a and y = a. Therefore, we can rewrite the equation as:
cos(4a - a) = cos(4a) cos(a) + sin(4a) sin(a)
Simplifying further, we have:
cos(3a) = cos(4a) cos(a) + sin(4a) sin(a)
Once again, let's compare this equation with the cosine of the difference formula:
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
We can see that x = 3a and y = a. Therefore, we can rewrite the equation as:
cos(3a - a) = cos(3a) cos(a) + sin(3a) sin(a)
Simplifying further, we have:
cos(2a) = cos(3a) cos(a) + sin(3a) sin(a)
Finally, let's compare this equation with the cosine of the difference formula:
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
We can see that x = 2a and y = a. Therefore, we can rewrite the equation as:
cos(2a - a) = cos(2a) cos(a) + sin(2a) sin(a)
Simplifying further, we have:
cos(a) = cos(2a) cos(a) + sin(2a) sin(a)
Now, we can subtract cos(2a) cos(a) from both sides of the equation:
cos(a) - cos(2a) cos(a) = sin(2a) sin(a)
Factoring out cos(a) on the left side of the equation, we have:
cos(a)(1 - cos(2a)) = sin(2a) sin(a)
Dividing both sides of the equation by sin(a), we get:
cos(a)(1 - cos(2a)) / sin(a) = sin(2a)
Using the identity sin(2x) = 2sin(x)cos(x), we can rewrite the equation as:
cos(a)(1 - cos(2a)) / sin(a) = 2sin(a)cos(a)
Now, let's simplify the left side of the equation:
cos(a)(1 - cos(2a)) / sin(a) = 2sin(a)cos(a)
Expanding the numerator on the left side of the equation, we have:
cos(a) - cos(2a)cos(a) / sin(a) = 2sin(a)cos(a)
Now, let's simplify the numerator on the left side of the equation:
cos(a) - cos(2a)cos(a) / sin(a) = 2sin(a)cos(a)
Factoring out cos(a), we have:
cos(a)(1 - cos(2a) / sin(a)) = 2sin(a)cos(a)
Dividing both sides of the equation by cos(a), we get:
1 - cos(2a) / sin(a) = 2sin(a)
Now, let's simplify the left side of the equation:
1 - cos(2a) / sin(a) = 2sin(a)
Multiplying both sides of the equation by sin(a), we get:
sin(a) - cos(2a) = 2sin^2(a)
Using the identity sin^2(x) = 1 - cos^2(x), we can rewrite the equation as:
sin(a) - cos(2a) = 2(1 - cos^2(a))
Expanding the right side of the equation, we have:
sin(a) - cos(2a) = 2 - 2cos^2(a)
Rearranging the terms, we have:
2cos^2(a) - sin(a) + cos(2a) - 2 = 0
This is the simplified form of the expression cosa cos7a + sin7a sin7α.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili