
Площа прямокутника дорівнює 120 см, а його периметр Знайдіть сторони та діагональ прямокутника.


Ответы на вопрос

Ответ:
На фото
Объяснение:
НАДЕЮСЬ ПОМОГ




Calculation of Rectangle's Sides and Diagonal
To find the sides and diagonal of a rectangle, we need to use the given information about its area and perimeter.
Given: - Area of the rectangle = 120 cm² - Perimeter of the rectangle = unknown
Let's start by finding the sides of the rectangle.
Finding the Sides of the Rectangle
The area of a rectangle is calculated by multiplying its length and width. In this case, the area is given as 120 cm². Let's assume the length of the rectangle is 'l' and the width is 'w'.
The formula for the area of a rectangle is:
Area = length × width
Substituting the given values, we have:
120 = l × w Next, let's find the perimeter of the rectangle.
Finding the Perimeter of the Rectangle
The perimeter of a rectangle is calculated by adding the lengths of all its sides. In this case, the perimeter is unknown. Let's assume the length of the rectangle is 'l' and the width is 'w'.
The formula for the perimeter of a rectangle is:
Perimeter = 2 × (length + width)
Substituting the given values, we have:
Perimeter = 2 × (l + w) Now, we have two equations with two variables (l and w). We can solve these equations simultaneously to find the values of l and w.
From equation we can express l in terms of w:
l = 120 / w Substituting this value of l in equation we get:
Perimeter = 2 × (120 / w + w)
Simplifying further, we have:
Perimeter = 2 × (120 + w²) / w
Since the perimeter is unknown, we cannot determine the exact values of l and w without additional information.
Finding the Diagonal of the Rectangle
The diagonal of a rectangle can be found using the Pythagorean theorem, which states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
In a rectangle, the diagonal forms a right-angled triangle with the sides of the rectangle. Let's assume the length of the rectangle is 'l' and the width is 'w'. The diagonal can be represented as 'd'.
Using the Pythagorean theorem, we have:
d² = l² + w²
Substituting the values from equation we get:
d² = (120 / w)² + w²
Simplifying further, we have:
d² = 120² / w² + w²
Unfortunately, without knowing the value of the width 'w', we cannot determine the exact value of the diagonal 'd'.
In conclusion, based on the given information, we can determine the relationship between the sides and diagonal of the rectangle using the formulas provided. However, without knowing the perimeter or the width of the rectangle, we cannot find the exact values of the sides or the diagonal.
Please provide additional information if available to solve the problem more accurately.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili