Вопрос задан 17.06.2023 в 02:47. Предмет Алгебра. Спрашивает Маслюченко Виктория.

Площа прямокутника дорівнює 120 см, а його периметр Знайдіть сторони та діагональ прямокутника.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Миронов Олег.

Ответ:

На фото

Объяснение:

НАДЕЮСЬ ПОМОГ


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Rectangle's Sides and Diagonal

To find the sides and diagonal of a rectangle, we need to use the given information about its area and perimeter.

Given: - Area of the rectangle = 120 cm² - Perimeter of the rectangle = unknown

Let's start by finding the sides of the rectangle.

Finding the Sides of the Rectangle

The area of a rectangle is calculated by multiplying its length and width. In this case, the area is given as 120 cm². Let's assume the length of the rectangle is 'l' and the width is 'w'.

The formula for the area of a rectangle is:

Area = length × width

Substituting the given values, we have:

120 = l × w Next, let's find the perimeter of the rectangle.

Finding the Perimeter of the Rectangle

The perimeter of a rectangle is calculated by adding the lengths of all its sides. In this case, the perimeter is unknown. Let's assume the length of the rectangle is 'l' and the width is 'w'.

The formula for the perimeter of a rectangle is:

Perimeter = 2 × (length + width)

Substituting the given values, we have:

Perimeter = 2 × (l + w) Now, we have two equations with two variables (l and w). We can solve these equations simultaneously to find the values of l and w.

From equation we can express l in terms of w:

l = 120 / w Substituting this value of l in equation we get:

Perimeter = 2 × (120 / w + w)

Simplifying further, we have:

Perimeter = 2 × (120 + w²) / w

Since the perimeter is unknown, we cannot determine the exact values of l and w without additional information.

Finding the Diagonal of the Rectangle

The diagonal of a rectangle can be found using the Pythagorean theorem, which states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

In a rectangle, the diagonal forms a right-angled triangle with the sides of the rectangle. Let's assume the length of the rectangle is 'l' and the width is 'w'. The diagonal can be represented as 'd'.

Using the Pythagorean theorem, we have:

d² = l² + w²

Substituting the values from equation we get:

d² = (120 / w)² + w²

Simplifying further, we have:

d² = 120² / w² + w²

Unfortunately, without knowing the value of the width 'w', we cannot determine the exact value of the diagonal 'd'.

In conclusion, based on the given information, we can determine the relationship between the sides and diagonal of the rectangle using the formulas provided. However, without knowing the perimeter or the width of the rectangle, we cannot find the exact values of the sides or the diagonal.

Please provide additional information if available to solve the problem more accurately.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос