Вопрос задан 16.06.2023 в 17:01. Предмет Алгебра. Спрашивает Новак Константин.

РЕБЯТ СРОЧНОПредставьте в виде произведения многочлен 12x² -60x+75.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пятибратов Сергей.
Держи!!!
3(2x-5) во второй степени
Можно пожалуйста лучший ответ!!!
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Этот многочлен можно представить в виде произведения двух многочленов. Для этого нам нужно разложить его на множители.

Сначала найдем общий множитель для всех коэффициентов многочлена. В данном случае общим множителем будет 3. Теперь мы можем разделить каждый коэффициент на 3:

12x² - 60x + 75 = 3(4x² - 20x + 25)

Теперь мы видим, что внутри скобок у нас получился квадратный трехчлен, который можно разложить на множители. Для этого найдем два числа, которые будут являться корнями квадратного трехчлена 4x² - 20x + 25. Эти числа будут являться коэффициентами нового многочлена.

Для этого воспользуемся формулой дискриминанта: D = b² - 4ac, где a = 4, b = -20, c = 25.

D = (-20)² - 4*4*25 = 400 - 400 = 0

Таким образом, дискриминант равен 0, что означает, что у нас есть один корень. Это означает, что квадратный трехчлен можно разложить на два одинаковых множителя:

4x² - 20x + 25 = (2x - 5)(2x - 5)

Теперь мы можем вернуться к исходному многочлену и представить его в виде произведения:

12x² - 60x + 75 = 3(2x - 5)(2x - 5)

Таким образом, мы представили исходный многочлен в виде произведения многочлена 3 и двух одинаковых множителей (2x - 5).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос