Вопрос задан 16.06.2023 в 03:11. Предмет Алгебра. Спрашивает Ризванов Ильзир.

Из одного населенного пункта в другой, находящийся на расстоянии 20 км от первого, выехал

туристический автобус "Альянс", а через 7 мин вслед за ним выехал Фёдор на грузовом автомобиле со скоростью на 20 км/ч км/ч больше скорости автобуса. Найди скорости каждого, если Фёдор прибыл во второй пункт на 3 мин раньше автобуса. скорость автобуса км/ч скорость грузовика км/ч.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Морозов Александр.

Ответ:

см фото

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the following information: - A tourist bus named "Альянс" left one settlement and traveled to another settlement, which is 20 km away from the first settlement. - After 7 minutes, Fedor left on a truck with a speed that is 20 km/h faster than the speed of the bus. - Fedor arrived at the second settlement 3 minutes earlier than the bus.

We need to find the speeds of both the bus and the truck.

Solution

Let's assume the speed of the bus is x km/h. According to the given information, the speed of the truck is (x + 20) km/h.

We can use the formula distance = speed × time to calculate the distances traveled by both the bus and the truck.

The distance traveled by the bus is 20 km, and the time taken is 7 minutes. We need to convert the time to hours, so it becomes 7/60 hours.

The distance traveled by the truck is also 20 km, and the time taken is 7 - 3 = 4 minutes. Again, we need to convert the time to hours, so it becomes 4/60 hours.

Using the formula, we can set up the following equations:

Distance traveled by the bus = Speed of the bus × Time taken by the bus

Distance traveled by the truck = Speed of the truck × Time taken by the truck

Calculation

Let's calculate the speeds of the bus and the truck.

Distance traveled by the bus = 20 km

Time taken by the bus = 7 minutes = 7/60 hours

Distance traveled by the truck = 20 km

Time taken by the truck = 4 minutes = 4/60 hours

Using the equations mentioned above, we can write:

20 = x × (7/60)

20 = (x + 20) × (4/60)

Simplifying these equations will give us the values of x and (x + 20).

Calculation Steps

Equation 1: 20 = x × (7/60)

Multiplying both sides by 60 to eliminate the fraction:

1200 = 7x

Dividing both sides by 7:

x = 1200/7

Equation 2: 20 = (x + 20) × (4/60)

Multiplying both sides by 60 to eliminate the fraction:

1200 = 4(x + 20)

Expanding the equation:

1200 = 4x + 80

Subtracting 80 from both sides:

1120 = 4x

Dividing both sides by 4:

x = 1120/4

Calculation Results

The speed of the bus (x) is approximately 171.43 km/h.

The speed of the truck (x + 20) is approximately 191.43 km/h.

Therefore, the speeds of the bus and the truck are approximately 171.43 km/h and 191.43 km/h, respectively.

Answer

The speed of the bus is approximately 171.43 km/h, and the speed of the truck is approximately 191.43 km/h.

Note: The above calculations are based on the given information and assumptions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос