
Из одного населенного пункта в другой, находящийся на расстоянии 20 км от первого, выехал
туристический автобус "Альянс", а через 7 мин вслед за ним выехал Фёдор на грузовом автомобиле со скоростью на 20 км/ч км/ч больше скорости автобуса. Найди скорости каждого, если Фёдор прибыл во второй пункт на 3 мин раньше автобуса. скорость автобуса км/ч скорость грузовика км/ч.

Ответы на вопрос

Ответ:
см фото
Объяснение:




Problem Analysis
We are given the following information: - A tourist bus named "Альянс" left one settlement and traveled to another settlement, which is 20 km away from the first settlement. - After 7 minutes, Fedor left on a truck with a speed that is 20 km/h faster than the speed of the bus. - Fedor arrived at the second settlement 3 minutes earlier than the bus.
We need to find the speeds of both the bus and the truck.
Solution
Let's assume the speed of the bus is x km/h. According to the given information, the speed of the truck is (x + 20) km/h.
We can use the formula distance = speed × time to calculate the distances traveled by both the bus and the truck.
The distance traveled by the bus is 20 km, and the time taken is 7 minutes. We need to convert the time to hours, so it becomes 7/60 hours.
The distance traveled by the truck is also 20 km, and the time taken is 7 - 3 = 4 minutes. Again, we need to convert the time to hours, so it becomes 4/60 hours.
Using the formula, we can set up the following equations:
Distance traveled by the bus = Speed of the bus × Time taken by the bus
Distance traveled by the truck = Speed of the truck × Time taken by the truck
Calculation
Let's calculate the speeds of the bus and the truck.
Distance traveled by the bus = 20 km
Time taken by the bus = 7 minutes = 7/60 hours
Distance traveled by the truck = 20 km
Time taken by the truck = 4 minutes = 4/60 hours
Using the equations mentioned above, we can write:
20 = x × (7/60)
20 = (x + 20) × (4/60)
Simplifying these equations will give us the values of x and (x + 20).
Calculation Steps
Equation 1: 20 = x × (7/60)
Multiplying both sides by 60 to eliminate the fraction:
1200 = 7x
Dividing both sides by 7:
x = 1200/7
Equation 2: 20 = (x + 20) × (4/60)
Multiplying both sides by 60 to eliminate the fraction:
1200 = 4(x + 20)
Expanding the equation:
1200 = 4x + 80
Subtracting 80 from both sides:
1120 = 4x
Dividing both sides by 4:
x = 1120/4
Calculation Results
The speed of the bus (x) is approximately 171.43 km/h.
The speed of the truck (x + 20) is approximately 191.43 km/h.
Therefore, the speeds of the bus and the truck are approximately 171.43 km/h and 191.43 km/h, respectively.
Answer
The speed of the bus is approximately 171.43 km/h, and the speed of the truck is approximately 191.43 km/h.
Note: The above calculations are based on the given information and assumptions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili