
Докажите тождество: а) -x(x-a)(x+b)=x(a-x)(b+x) б) (-а-b)(a+b) = -(a+b)²в) 36-(-(9c-15))=3(3c+7)
г) y(-2-(y-4))=y(2-y)помогите пожалуйста мне срочно нужно !!! ПОЖАЛУЙСТА

Ответы на вопрос

Ответ:
см фоьо
Объяснение:




a) Proof of Identity: -x(x-a)(x+b) = x(a-x)(b+x)
To prove the identity -x(x-a)(x+b) = x(a-x)(b+x), we can simplify both sides of the equation and show that they are equal.
Starting with the left-hand side (LHS):
LHS = -x(x-a)(x+b) = -x(x^2 + bx - ax - ab) = -x(x^2 + (b-a)x - ab)
Now, let's simplify the right-hand side (RHS):
RHS = x(a-x)(b+x) = x(ab + bx - ax - x^2) = x(ab + (b-a)x - x^2)
Comparing the LHS and RHS, we can see that they are equal:
LHS = -x(x^2 + (b-a)x - ab) = x(ab + (b-a)x - x^2) = RHS
Therefore, we have proved the identity -x(x-a)(x+b) = x(a-x)(b+x).
b) Proof of Identity: (-a-b)(a+b) = -(a+b)²
To prove the identity (-a-b)(a+b) = -(a+b)², we can simplify both sides of the equation and show that they are equal.
Starting with the left-hand side (LHS):
LHS = (-a-b)(a+b) = -a(a+b) - b(a+b) = -a² - ab - ab - b² = -a² - 2ab - b²
Now, let's simplify the right-hand side (RHS):
RHS = -(a+b)² = -(a+b)(a+b) = -a(a+b) - b(a+b) = -a² - ab - ab - b² = -a² - 2ab - b²
Comparing the LHS and RHS, we can see that they are equal:
LHS = -a² - 2ab - b² = RHS
Therefore, we have proved the identity (-a-b)(a+b) = -(a+b)².
c) Proof of Identity: 36 - (-(9c-15)) = 3(3c+7)
To prove the identity 36 - (-(9c-15)) = 3(3c+7), we can simplify both sides of the equation and show that they are equal.
Starting with the left-hand side (LHS):
LHS = 36 - (-(9c-15)) = 36 + (9c-15) = 36 + 9c - 15 = 9c + 21
Now, let's simplify the right-hand side (RHS):
RHS = 3(3c+7) = 9c + 21
Comparing the LHS and RHS, we can see that they are equal:
LHS = 9c + 21 = RHS
Therefore, we have proved the identity 36 - (-(9c-15)) = 3(3c+7).
d) Proof of Identity: y(-2-(y-4)) = y(2-y)
To prove the identity y(-2-(y-4)) = y(2-y), we can simplify both sides of the equation and show that they are equal.
Starting with the left-hand side (LHS):
LHS = y(-2-(y-4)) = y(-2-y+4) = y(-y+2) = -y^2 + 2y
Now, let's simplify the right-hand side (RHS):
RHS = y(2-y) = 2y - y^2
Comparing the LHS and RHS, we can see that they are equal:
LHS = -y^2 + 2y = RHS
Therefore, we have proved the identity y(-2-(y-4)) = y(2-y).
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili