Вопрос задан 15.06.2023 в 04:01. Предмет Алгебра. Спрашивает Хисамова Венера.

Раскрой скобки и определи степень многочлена 1) (2w³+7r²)(2w³-7r²) 2) (6х-9y⁶)(+9y⁶) 3)

(9p⁴-12q⁴)(9p⁴+12q⁴)4) (x+y)(x-y)-x(x+2)+y²5) (3x-y)(3x+y)+y(y+4)-9x²6) (x-3y)(x+3y)-(x-y)²+10y²7) -(3x+y)²+(y-x)(x+y)+10x²Нужен только ответ помогите пожалуйста ​
0 1
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Якупов Руслан.

1)4w^6-49r^4(степень многочлена 10)
2)54xy^6-81y^12(степень многочлена 18)
3)81p^8-144q^8(степень многочлена 16)
4)-2x

5)4y

6)2xy

7)-6xy

0 1
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Expanding and Determining the Degree of Polynomials

To expand and determine the degree of each polynomial expression, let's go through each expression one by one:

1. (1 + (2w³ + 7r²))(2w³ - 7r²) - To expand this expression, we can use the distributive property. Multiply each term in the first set of parentheses by each term in the second set of parentheses. - The expanded form is: 2w³ + 7r² + 4w⁶ - 14w³r² - 7r⁴. - The degree of this polynomial is the highest exponent of the variable. In this case, the highest exponent is 6, so the degree is 6.

2. (6х - 9y⁶)(9y⁶) - To expand this expression, we can again use the distributive property. Multiply each term in the first set of parentheses by each term in the second set of parentheses. - The expanded form is: 54xy⁶ - 81y¹². - The degree of this polynomial is the highest exponent of the variable. In this case, the highest exponent is 12, so the degree is 12.

3. (9p⁴ - 12q⁴)(9p⁴ + 12q⁴) - Expanding this expression using the distributive property, we get: 81p⁸ - 144p⁴q⁴ + 144p⁴q⁴ - 144q⁸. - Simplifying further, we have: 81p⁸ - 144q⁸. - The degree of this polynomial is the highest exponent of the variable. In this case, the highest exponent is 8, so the degree is 8.

4. (x + y)(x - y) - x(x + 2) + y² - Expanding the first set of parentheses using the distributive property, we get: x² - xy + xy - y² - x² - 2x + y². - Simplifying further, we have: -2x. - The degree of this polynomial is the highest exponent of the variable. In this case, the highest exponent is 1, so the degree is 1.

5. (3x - y)(3x + y) + y(y + 4) - 9x² - Expanding the first set of parentheses using the distributive property, we get: 9x² - 3xy + 3xy - y² + y² + 4y - 9x². - Simplifying further, we have: 4y. - The degree of this polynomial is the highest exponent of the variable. In this case, the highest exponent is 1, so the degree is 1.

6. (x - 3y)(x + 3y) - (x - y)² + 10y² - Expanding the first set of parentheses using the distributive property, we get: x² - 3xy + 3xy - 9y² - (x - y)² + 10y². - Simplifying further, we have: x² - 9y² - (x - y)² + 10y². - The degree of this polynomial is the highest exponent of the variable. In this case, the highest exponent is 2, so the degree is 2.

7. -(3x + y)² + (y - x)(x + y) + 10x² - Expanding the first set of parentheses using the distributive property, we get: -(9x² + 6xy + y²) + (xy + y² - x² - xy) + 10x². - Simplifying further, we have: -9x² - 6xy - y² + xy + y² - x² + 10x². - Combining like terms, we get: x² - 5x² - 5xy. - Simplifying further, we have: -4x² - 5xy. - The degree of this polynomial is the highest exponent of the variable. In this case, the highest exponent is 2, so the degree is 2.

I hope this helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос