
Спростити вираз 1.(A ∪ U ∩ (B̄ ∩ B)) ∪ AĀ 2.(A ∪ B ∩ C) ∩ (A ∪ B̄ ) 3.((A ∪ B)\(AA ∪ B̄ )) ∪ B
4.(A\B)\(B \C)\A 5.(A ∪ B̄ ∪ B̄ ∩ C ∩ A ∪ B̄ ∪ C̄ ) ∩ (A ∩ (B\A))

Ответы на вопрос

это на каком языке Я не понимаю?



- (A ∪ U ∩ (B̄ ∩ B)) ∪ AĀ
Let's simplify the expression step by step:
Ā ∩ B: The complement of A (∀U - A) intersected with B (∀U - B) gives an empty set (∅) because the complement of a set and its intersection with another set would result in an empty set.
U ∩ (B̄ ∩ B): The complement of B (∀U - B) intersected with B gives an empty set as well (∅) for the same reason mentioned in step 1.
A ∪ ∅: The union of A with an empty set (∅) is just A.
A ∪ AĀ: The union of a set with its complement (∀U - A) is the universal set U.
Therefore, the simplified expression is U.
- (A ∪ B ∩ C) ∩ (A ∪ B̄)
Let's simplify the expression step by step:
B ∩ C: The intersection of B and C gives a set (B ∩ C).
A ∪ (B ∩ C): The union of A with (B ∩ C) gives a set (A ∪ (B ∩ C)).
B̄: The complement of B (∀U - B) is a set.
A ∪ B̄: The union of A with B̄ (∀U - B) gives a set (A ∪ B̄).
(A ∪ (B ∩ C)) ∩ (A ∪ B̄): The intersection of (A ∪ (B ∩ C)) and (A ∪ B̄) gives the final set.
The expression is simplified as (A ∪ (B ∩ C)) ∩ (A ∪ B̄).
- ((A ∪ B)(AA ∪ B̄ )) ∪ B
Let's simplify the expression step by step:
AA: The complement of A (∀U - A) is a set.
AA ∪ B̄: The union of AA and the complement of B (∀U - B) gives a set (AA ∪ B̄).
(A ∪ B)(AA ∪ B̄): The difference between the union of A and B and (AA ∪ B̄) gives a set ((A ∪ B)(AA ∪ B̄)).
((A ∪ B)(AA ∪ B̄)) ∪ B: The union of ((A ∪ B)(AA ∪ B̄)) and B gives the final set.
The expression is simplified as ((A ∪ B)(AA ∪ B̄)) ∪ B.
- (A\B)(B \C)\A
Let's simplify the expression step by step:
A\B: The set difference between A and B gives a set (A\B).
B \ C: The set difference between B and C gives a set (B \ C).
(A\B)(B \ C): The set difference between (A\B) and (B \ C) gives a set ((A\B)(B \ C)).
(A\B)(B \ C)\A: The set difference between ((A\B)(B \ C)) and A gives the final set.
The expression is simplified as (A\B)(B \ C)\A


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili