
Допоможіть!(4^n+ 15n-1): кратно 9 математична індукція


Ответы на вопрос

Ответ:
Докажем, что при любом натуральном и выражение А(n) = 4n + 15n - 1 кратно 9. Используем стандартную схему доказательства: 1. При n = 1 выражение A(1) = 41 + 15 · 1 - 1 = 18 кратно 9. 2. Предположим, что при n = k выражение А(k) = 4k + 15k - 1 кратно 9, т. е. 4k + 15k - 1 = 9р (где р - натуральное число). 3. При n = k + 1 надо доказать, что выражение А(k +1) = 4k+1 + 15(k + 1) - 1 делится на 9. Для доказательства можно использовать два способа. 1-й способ. Поступим, как и в примере 1, т. е. выделим в выражении А(k + 1) часть А(k), которая делится на 9. Для этого преобразуем выражение А(k + 1) к виду А(k +1) = 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18 = 4 А(k) + 9(2 – 5k). Видно, что выражение А(k + 1) является суммой двух слагаемых, каждое из которых делится на 9. Сложность этого способа состоит в умении в выражении А(k + 1) выделить часть А(k), т. е. догадаться до преобразования 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18. Поэтому рассмотрим другой способ, лишенный такого недостатка. 2-й способ. Из выражения 4k + 15k - 1 = 9р (пункт 2) найдем 4k = 9р + 1 – 15k и подставим в выражение А(k +1) = 4k+1 + 15k + 14 = 4(9p + 1 – 15k) + 15k + 14 = 36p + 18 – 45k. Видно, что выражение A(k + 1) состоит из трех слагаемых, каждое из которых делится на. 9. Связь между пунктами 2 и 3 была обеспечена за счет того, что в пункте 2 была найдена величина 4k и подставлена в выражение пункта 3. Заметим, что если на число п накладываются по условию задачи ограничения, то необходимо ввести новое натуральное число т и свести задачу к старой схеме.
Объяснение:



Щоб використати математичну індукцію для доведення, що вираз кратний 9 для всіх натуральних чисел , спочатку ми повинні довести базовий випадок, а потім встановити індукційний крок.
Базовий випадок: Перевіримо, що вираз є кратним 9. Дійсно, 18 ділиться на 9 без залишку.
Індукційний крок: Припустимо, що для певного додатного цілого числа вираз кратний 9. Ми повинні довести, що це так само вірно для .
Перевіримо вираз для :
За припущенням, кратний 9. Потрібно довести, що також кратний 9.
Розкладемо на добуток:
Тоді вираз може бути переписаний:
Так як є сумою двох чисел, які кратні 9 (за припущенням кратний 9), то сума також буде кратна 9.
Таким чином, доведено, що якщо вираз кратний 9 для деякого , то він також кратний 9 для .
Завершення застосування математичної індукції: Оскільки базовий випадок (для ) є кратним 9, а також і


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili