Вопрос задан 08.06.2023 в 10:16. Предмет Алгебра. Спрашивает Шабалин Денис.

Определите, подобны ли треугольники, если их стороны равны: 1) 25 см, 15 см, 10 см и 100 см, 75

см, 50 см; 2) 2 см, 5 см, 6 см и 8 см, 18 см, 20 см.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Выборнов Данил.

Ответ:

короче сначала рисуй треугольник а потом попробуй решить, когда решил потом дели на 7в квадрате

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения подобия треугольников необходимо проверить, соблюдаются ли два условия: соотношение длин сторон и соотношение углов.

  1. Для первого набора сторон: 25 см, 15 см, 10 см и 100 см, 75 см, 50 см.

Чтобы треугольники были подобными, необходимо, чтобы отношения длин соответствующих сторон были одинаковыми. Давайте проверим это:

Отношение длин сторон первого треугольника: 25/15 = 5/3 Отношение длин сторон второго треугольника: 100/75 = 4/3

Отношения длин сторон не совпадают, поэтому треугольники не являются подобными.

  1. Для второго набора сторон: 2 см, 5 см, 6 см и 8 см, 18 см, 20 см.

Отношение длин сторон первого треугольника: 2/5 = 0.4 Отношение длин сторон второго треугольника: 8/20 = 0.4

Отношения длин сторон совпадают, поэтому треугольники являются подобными.

Таким образом, ответы:

  1. Треугольники не подобны.
  2. Треугольники подобны.
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос