Вопрос задан 04.06.2023 в 01:20. Предмет Алгебра. Спрашивает Маринов Даня.

Найдите хорду, на которую опирается угол 135 градусов, вписанный в окружность радиуса 3√2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Русаков Рома.

Ответ:

6

Объяснение:

Центральный угол опирающийся на ту же хорду равен удвоенномц острому углу вписанному в окружность и опирающимся на эту же хорду. Острый угол равен180-135=45 гр. Центральный угол 90 градусов.  катеты треугольника с вершиной в центре окружности и хордой, которая образует гипотенузу равны  3√2.

По теореме Пифагора квадрат хорды 2*9*2=36.

Хорда равна 6

1 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения хорды, на которую опирается угол 135 градусов вписанный в окружность радиуса 3√2, мы можем использовать геометрические свойства окружности.

Первым шагом нам нужно найти длину дуги, соответствующей углу 135 градусов. Длина дуги на окружности равна произведению длины окружности и соотношения угла к полному углу в 360 градусов.

Длина окружности равна 2πr, где r - радиус окружности. В данном случае радиус равен 3√2, поэтому длина окружности будет 2π(3√2) = 6π√2.

Соотношение угла 135 градусов к полному углу в 360 градусов будет 135/360 = 3/8.

Теперь мы можем найти длину дуги, соответствующей углу 135 градусов:

Длина дуги = (длина окружности) * (соотношение угла к полному углу) = 6π√2 * (3/8) = 9π√2/4 = (9/4)π√2

Так как хорда опирается на эту дугу и соединяет две точки на окружности, нам нужно найти длину хорды, которая соответствует этой дуге.

В данном случае длина хорды будет равна двум радиусам, умноженным на синус половины угла, соответствующего этой дуге. Угол половины дуги можно найти, разделив угол дуги пополам.

Угол половины дуги = 135 градусов / 2 = 67.5 градусов

Теперь мы можем найти синус этого угла:

sin(67.5 градусов) ≈ 0.9239

Длина хорды = 2 * (радиус) * (sin(угол половины дуги)) = 2 * (3√2) * 0.9239 ≈ 5.543

Таким образом, хорда, на которую опирается угол 135 градусов, вписанный в окружность радиуса 3√2, примерно равна 5.543.

0 5

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос