
Sin5x*cos3x-cos5x*sin3x=-0,5


Ответы на вопрос

Ответ: в файле
Объяснение:




To solve the equation sin(5x) * cos(3x) - cos(5x) * sin(3x) = -0.5, we can use the trigonometric identity for the difference of angles:
sin(A - B) = sin(A) * cos(B) - cos(A) * sin(B).
Comparing this identity to the given equation, we can see that A = 5x and B = 3x. So we can rewrite the equation as:
sin(5x - 3x) = -0.5.
Simplifying further, we have:
sin(2x) = -0.5.
To find the solutions for this equation, we need to determine the values of x that satisfy the equation sin(2x) = -0.5.
Using the unit circle or a trigonometric table, we can determine the angles that have a sine of -0.5. The two principal solutions are -30 degrees (-π/6 radians) and 210 degrees (7π/6 radians).
However, since we are solving for x, we need to find the values of x that correspond to these angles.
For -30 degrees (-π/6 radians), we can set up the equation:
2x = -π/6 + 2πn,
where n is an integer representing the number of complete cycles around the unit circle. Solving for x, we have:
x = (-π/6 + 2πn)/2.
Similarly, for 210 degrees (7π/6 radians), we have:
2x = 7π/6 + 2πn,
which leads to:
x = (7π/6 + 2πn)/2.
These equations give us the general solutions for x that satisfy the given equation. By plugging in different integer values for n, we can find multiple solutions for x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili