
2 cos пx/3=1,если |x|<8


Ответы на вопрос

пx\3= п\3 + 2пn
пx = п + 6пn
x= 1 + 6n



To solve the equation 2cos(x/3) = 1, we can start by isolating cos(x/3) by dividing both sides by 2:
cos(x/3) = 1/2
Next, we need to find the values of x that satisfy this equation, given that |x| < 8. We can use the fact that cos(x/3) = 1/2 for specific angles in the unit circle, such as π/3 and 5π/3 in the first and fourth quadrants, respectively.
To find the solutions in the given interval, we need to consider all angles whose reference angles fall within the interval (-8,8). The reference angle is the acute angle between the terminal side of an angle and the x-axis.
For the first quadrant, the reference angle is x/3, so we need to solve:
x/3 = π/3 + 2πn, where n is an integer
x = π + 6πn, where n is an integer
For the fourth quadrant, the reference angle is 2π - x/3, so we need to solve:
2π - x/3 = π/3 + 2πn, where n is an integer
x = 16π/3 + 18πn, where n is an integer
However, we need to ensure that the solutions satisfy the condition |x| < 8. Since the minimum value of the solutions we obtained is π, we can check how many times we need to add 2π to π to get a value that is less than 8:
π + 2π = 3π, which is less than 8
π + 4π = 5π, which is less than 8
π + 6π = 7π, which is greater than 8
Therefore, the solutions that satisfy the given equation and the condition |x| < 8 are:
x = π, 3π, 5π, 16π/3, 22π/3, 28π/3
Note that these solutions can be simplified using common denominators.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili