
AX-9=0 (A-5)X=A-5 (A+7)(A-1)X=A-1


Ответы на вопрос

Ответ:
Объяснение:
AX-9=0
X=9/A
(A-5)*X=A-5
X= A-5/A-5
X=1
(A+7)(A-1)*X=A-1
X=A-1/(A+7)(A-1)
X=1/A+7



To solve these equations, we need to isolate the variable "X" on one side of the equation.
Starting with the first equation:
AX - 9 = 0
Adding 9 to both sides, we get:
AX = 9
Dividing both sides by A, we get:
X = 9/A
Now, moving on to the second equation:
(A - 5)X = A - 5
Substituting X with 9/A, we get:
(A - 5)(9/A) = A - 5
Expanding the left side of the equation:
9 - 45/A = A - 5
Multiplying both sides by A, we get:
9A - 45 = A^2 - 5A
Moving all the terms to one side:
A^2 - 14A + 45 = 0
Factoring the equation:
(A - 9)(A - 5) = 0
Therefore, A = 9 or A = 5.
If A = 9, then X = 1.
If A = 5, then the equation (A - 5)X = A - 5 becomes 0X = 0, which is true for any value of X.
Finally, let's solve the third equation:
(A + 7)(A - 1)X = A - 1
Substituting X with 9/A, we get:
(A + 7)(A - 1)(9/A) = A - 1
Expanding the left side of the equation:
9(A^2 + 6A - 7) = A - 1
Multiplying both sides by A:
9A^2 + 54A - 63 = A - 1
Moving all the terms to one side:
9A^2 + 53A - 62 = 0
Factoring the equation:
(9A - 2)(A + 31) = 0
Therefore, A = 2/9 or A = -31.
If A = 2/9, then X = 81/2.
If A = -31, then the equation (A + 7)(A - 1)X = A - 1 becomes 0X = 0, which is true for any value of X.
So the solutions for the given system of equations are:
A = 9, X = 1 A = 5, X can be any value A = 2/9, X = 81/2 A = -31, X can be any value.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili