Вопрос задан 19.06.2018 в 17:52. Предмет Алгебра. Спрашивает Шорохов Андрей.

В некоторой школе каждый десятиклассник либо всегда говорит правду, либо всегда лжёт. Директор

вызвал к себе нескольких десятиклассников и спросил каждого из них про каждого из остальных, правдивец тот или лжец. Всего было получено 44 ответа «правдивец» и 28 ответов «лжец». Сколько правдивых ответов мог получить директор?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алленов Иван.

Для начала посчитаем, сколько всего было ответов: 28+44=72 Методом подбора: пусть всего 9 десятиклассников. Проверим: 9 десятиклассников * 8 ответов от каждого (ведь исключаем говорящего)= 72 ответа всего. Итак, пусть правдивцев - 7, а лжецов - 2. Тогда: Правдивцы: 7(кол-во правдивцев)*2(кол-во лжецов)=14 - ответы "лжец" среди правдивцев; 7(кол-во правдивцев)*6(кол-во правдивцев, исключая говорящего)=42 - ответы "правдивец" среди правдивцев Лжецы: 2(кол-во лжецов*7(кол-во правдивцев)=14 - ответов "лжец" среди лжецов 2(кол-во лжецов)*1(кол-во лжецов, исключая говорящего)=2 - ответа "правдивец" среди лжецов ________ Посчитаем кол-во действительно правдивых ответов всего, т. е. ответов честных десятиклассников: 42+14=56 Это и будет ответом. Можно проверить правдивость моего предположения, посчитав все ответы "правдивец" (42+2=44) и "лжец" (14+14=28) Надеюсь, доступно :)

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос