
Выделите полный квадрат из многочлена а)4+2q+q^2 б)x^2+6x+1
в)a^2-4a+1 г)m^2-6m+9 д)16+8p+p^2 е)a^2-2a

Ответы на вопрос

a) 4+2q+q^2= (2+q)^2
б) x^2+6x+1=x^2+6x+1+8-8 = x^2+6x+9 - 8 = (x+3)^2 - 8
в) a^2-4a+1= a^2-4a+1 +3 - 3=a^2-4a+4 -3 = (a-2)^2-3
г) m^2-6m+9=(m-3)^2
д) 16+8p+p^2 = (4+p)^2
е) a^2-2a= a^2-2a +1 -1= (a-1)^2 -1



а)4+2q+q^2: We can try to complete the square by adding and subtracting a constant value that would turn the quadratic expression into a perfect square. To do this, we need to take half of the coefficient of the q-term, square it, and add that value both inside and outside the parentheses:
4 + 2q + q^2 = (q + 1)^2 - 1
So, the full square is (q + 1)^2.
б)x^2+6x+1: We can complete the square by adding and subtracting a constant value that would turn the quadratic expression into a perfect square. To do this, we need to take half of the coefficient of the x-term, square it, and add that value both inside and outside the parentheses:
x^2 + 6x + 1 = (x + 3)^2 - 8
So, the full square is (x + 3)^2.
в)a^2-4a+1: We can complete the square by adding and subtracting a constant value that would turn the quadratic expression into a perfect square. To do this, we need to take half of the coefficient of the a-term, square it, and add that value both inside and outside the parentheses:
a^2 - 4a + 1 = (a - 2)^2 - 3
So, the full square is (a - 2)^2.
г)m^2-6m+9: We can complete the square by adding and subtracting a constant value that would turn the quadratic expression into a perfect square. To do this, we need to take half of the coefficient of the m-term, square it, and add that value both inside and outside the parentheses:
m^2 - 6m + 9 = (m - 3)^2
So, the full square is (m - 3)^2.
д)16+8p+p^2: We can try to complete the square by adding and subtracting a constant value that would turn the quadratic expression into a perfect square. To do this, we need to take half of the coefficient of the p-term, square it, and add that value both inside and outside the parentheses:
16 + 8p + p^2 = (p + 4)^2 - 16
So, the full square is (p + 4)^2.
е)a^2-2a: We can complete the square by adding and subtracting a constant value that would turn the quadratic expression into a perfect square. To do this, we need to take half of the coefficient of the a-term, square it, and add that value both inside and outside the parentheses:
a^2 - 2a = (a - 1)^2 - 1
So, the full square is (a - 1)^2.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili