
у прямокутнику ABCD бисектриса DN прямого кута D ділять протилежну сторону на відрізки CN и BN які
дорівнюють 6 см і 5 см відповідно. знайдіть периметр прямокутника. РЕШЕНИЕ!!!!!

Ответы на вопрос

Ответ:
Объяснение: решение




Застосуємо властивості бісектриси прямого кута: $CD = ND$ і $AD = DN$. Так як прямокутник ABCD прямий, то $AD \perp CD$ і $DN$ є бісектрисою кута $D$, тому $\angle CDN = \angle BDN = 45^{\circ}$.
За теоремою Піфагора в прямокутному трикутнику CDN маємо:
З іншого боку, за теоремою Піфагора в прямокутному трикутнику BDN маємо:
За умовою задачі $CN = 6$ см і $BN = 5$ см, тому можна записати систему рівнянь: \begin{align*} BC^2 - DN^2 &= 36, \ AD^2 - DN^2 &= 25. \end{align*} Додавши ці рівняння, отримаємо $BC^2 + AD^2 - 2DN^2 = 61$. Але $BC = AD$, тому
або ж
Підставляючи це в перше рівняння системи, маємо
Отже, $BC = \sqrt{\frac{133}{2}}$. Звідси периметр прямокутника ABCD дорівнює:
Залишилося знайти $AD$. За теоремою Піфагора в прямокутному трикутнику ACD маємо:
За умовою задачі $BC^2 = \frac{133}{2}$ і $CD = ND$, тому можна записати:
З іншого боку, за теоремою Піфагора в прямокутному трикутнику BDN маємо:
Підставляючи сюди вираз


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili