
Cos^2(5p/8)-sin^2(3p/8)


Ответы на вопрос








We can use trigonometric identities to simplify this expression.
Recall the following identity:
cos(2θ) = cos²(θ) - sin²(θ)
Using this identity, we can rewrite the expression as:
cos²(5π/8) - sin²(3π/8) = cos(2(5π/8)) - cos(2(π/2 - 3π/8))
Now, recall the following identity:
cos(π - θ) = -cos(θ)
Using this identity, we can simplify the expression further:
cos²(5π/8) - sin²(3π/8) = cos(2(5π/8)) + cos(2(3π/8))
Now, we can use another trigonometric identity:
cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
Using this identity, we can write:
cos(2(5π/8)) = cos(π/4 + 3π/8) = cos(π/4)cos(3π/8) - sin(π/4)sin(3π/8)
Similarly, we have:
cos(2(3π/8)) = cos(π/2 - π/8) = cos(π/2)cos(π/8) + sin(π/2)sin(π/8)
Now, we can substitute these values back into the expression:
cos²(5π/8) - sin²(3π/8) = [cos(π/4)cos(3π/8) - sin(π/4)sin(3π/8)] + [cos(π/2)cos(π/8) + sin(π/2)sin(π/8)]
Simplifying further using known values of sine and cosine:
cos²(5π/8) - sin²(3π/8) = [(√2/2)(√2cos(π/8)) - (√2/2)(√2sin(π/8))] + [0 + (1)(sin(π/8))]
Finally, we can simplify to get the answer:
cos²(5π/8) - sin²(3π/8) = cos(π/8) - sin(π/8) = (cos(π/4 - π/8)) = √2/2 ∙ √2/2 - √2/2 ∙ √2/2 = 0
Therefore, the value of cos²(5π/8) - sin²(3π/8) is equal to 0.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili