
1) sin 2x + cos 2x= 0 2) sin 4x - cos 2x = 0


Ответы на вопрос




Let's solve each equation separately:
- sin 2x + cos 2x = 0:
To solve this equation, we can use a trigonometric identity to rewrite it in terms of a single trigonometric function. The identity we'll use is:
sin(2x) = 2sin(x)cos(x) cos(2x) = cos^2(x) - sin^2(x)
Replacing sin(2x) and cos(2x) in the equation, we have:
2sin(x)cos(x) + cos^2(x) - sin^2(x) = 0
Rearranging the terms:
cos^2(x) + 2sin(x)cos(x) - sin^2(x) = 0
Now, we can use another identity to simplify further:
cos^2(x) - sin^2(x) = cos(2x)
Substituting in the equation:
cos(2x) + 2sin(x)cos(x) = 0
Factoring out a common factor:
cos(2x) + 2sin(x)cos(x) = cos(2x) + sin(2x) = 0
Now we have:
cos(2x) + sin(2x) = 0
Using the Pythagorean identity sin^2(x) + cos^2(x) = 1, we can rewrite the equation as:
sin(2x) = -cos(2x)
Dividing both sides by cos(2x) (assuming cos(2x) is not equal to zero), we get:
tan(2x) = -1
Taking the inverse tangent (arctan) of both sides, we have:
2x = arctan(-1)
Simplifying further:
2x = -π/4 + nπ (where n is an integer)
Dividing by 2:
x = -π/8 + nπ/2 (where n is an integer)
So the general solution to the equation sin 2x + cos 2x = 0 is:
x = -π/8 + nπ/2 (where n is an integer)
- sin 4x - cos 2x = 0:
Using similar steps as above, we can rewrite the equation as:
2sin(2x)cos(2x) - cos^2(2x) + sin^2(2x) = 0
Rearranging the terms:
sin^2(2x) + 2sin(2x)cos(2x) - cos^2(2x) = 0
Now, let's use another trigonometric identity:
sin^2(x) + cos^2(x) = 1
Substituting in the equation:
2sin^2(2x) + 2sin(2x)cos(2x) - 2cos^2(2x) = 0
Dividing the equation by 2:
sin^2(2x) + sin(2x)cos(2x) - cos^2(2x) = 0
Factoring the equation:
(sin(2x) - cos(2x))(sin(2x) + cos(2x)) = 0
Since sin(2x) + cos(2x) = 0 (as given in the equation), we have:
sin(2x) - cos(2x) = 0
Now we can solve this equation as we did in the previous example:
tan(2x) = 1
Taking the inverse tangent:
2x = π/4 + nπ (where


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili