
Решить неравенство с модулем |x-3|-|2x+7|-x < = 4


Ответы на вопрос





Для решения неравенства с модулем, мы должны рассмотреть все возможные комбинации знаков внутри модулей и решить соответствующие неравенства без модулей. Давайте разберемся по шагам:
Рассмотрим случай, когда выражения внутри модулей положительны. Для этого нам нужно решить следующую систему неравенств: x - 3 - (2x + 7) - x < 4 Это эквивалентно: -2x - 10 < 4 -2x < 14 x > -7
Рассмотрим случай, когда первое выражение положительно, а второе отрицательно. Для этого нам нужно решить следующую систему неравенств: x - 3 - (-(2x + 7)) - x < 4 Это эквивалентно: -2x + 4 < 4 -2x < 0 x > 0
Рассмотрим случай, когда оба выражения отрицательны. Для этого нам нужно решить следующую систему неравенств: -(x - 3) - (-(2x + 7)) - x < 4 Это эквивалентно: -x + 3 + 2x + 7 - x < 4 2x + 10 - x < 4 x + 10 < 4 x < -6
Таким образом, решением исходного неравенства является объединение всех полученных интервалов: x > -7, x > 0, x < -6.
Мы можем упростить это, объединив два интервала, чтобы получить: x > 0 или x < -6.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili