
Ctgx cosx+sinx >=2 решения на промежутке [-пи/2;пи/8]


Ответы на вопрос

ctgx cosx+sinx >=2 решения на промежутке [-пи/2;пи/8]



To solve the inequality ctgx cosx + sinx >= 2 on the interval [-π/2, π/8], we can follow these steps:
Step 1: Find the critical points. Take the derivative of the left-hand side of the inequality to find critical points where the derivative is equal to zero or undefined.
First, let's simplify the left-hand side of the inequality: ctgx cosx + sinx >= 2 (cosx/sinx) cosx + sinx >= 2 cos²x/sinx + sinx >= 2
Now, find the derivative of the left-hand side: d/dx (cos²x/sinx + sinx) = 0 (-2sinxcosx/sinx²) + cosx = 0 -2cosx/sinx + cosx = 0 cosx(-2/sinx + 1) = 0
To find the critical points, solve -2/sinx + 1 = 0: -2/sinx + 1 = 0 -2 + sinx = 0 sinx = 2
However, sinx cannot be equal to 2 since the range of sinx is [-1, 1]. Therefore, there are no critical points within the given interval.
Step 2: Test the endpoints. Evaluate the left-hand side of the inequality at the endpoints of the interval.
For x = -π/2: ctg(-π/2) cos(-π/2) + sin(-π/2) = 0 - 1 = -1 Since -1 < 2, the inequality is not satisfied at x = -π/2.
For x = π/8: ctg(π/8) cos(π/8) + sin(π/8) ≈ 0.765 > 2 Since 0.765 > 2, the inequality is not satisfied at x = π/8.
Step 3: Analyze the inequality. Since there are no critical points within the interval and the inequality is not satisfied at the endpoints, there are no solutions to the inequality ctgx cosx + sinx >= 2 on the interval [-π/2, π/8].


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili