
(5x-10)/(x+8)(x-7)>0


Ответы на вопрос

(5x - 10)(x + 8)(x - 7) > 0
5x - 10 = 0
x₁ = 2
x + 8 = 0
x₂ = - 8
x - 7 = 0
x₃ = 7
- + - +
-------------------------------------------------------------------------------------------->
- 8 2 7 x
x∈(-8;2) (7;+∞)



To solve the inequality , we can use a sign chart or interval notation.
Let's break it down into three parts by considering the sign of each factor in the denominator: , , and .
: Solving this inequality, we find . This means that is positive to the right of -8.
: Solving this inequality, we find . This means that is positive to the right of 7.
: Solving this inequality, we find . This means that is positive to the right of 2.
Now, let's consider all the cases:
Case 1: : In this case, all three factors are negative. Dividing a negative number by negative factors will result in a positive value. Therefore, the inequality is true when .
Case 2: : In this case, is positive, is negative, and is negative. Dividing a negative number by positive factors will result in a negative value. Therefore, the inequality is false when .
Case 3: : In this case, all three factors are positive. Dividing a positive number by positive factors will result in a positive value. Therefore, the inequality is true when .
To summarize: is true when or .
In interval notation, the solution is .


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili