6 sin^2x+14sinxcosx+4=0
Ответы на вопрос
я толька так писала. верно?

To solve the equation 6sin^2(x) + 14sin(x)cos(x) + 4 = 0, we can start by factoring it.
Let's rewrite the equation as follows: 6sin^2(x) + 14sin(x)cos(x) + 4 = 0
Since the equation contains both sin^2(x) and sin(x)cos(x), we can rewrite the equation using a trigonometric identity: 6sin^2(x) + 7sin(2x) + 4 = 0
Now, let's substitute sin(2x) with 2sin(x)cos(x): 6sin^2(x) + 14sin(x)cos(x) + 4 = 0
The equation now becomes: 6sin^2(x) + 7(2sin(x)cos(x)) + 4 = 0 6sin^2(x) + 14sin(x)cos(x) + 4 = 0
We can now factor the equation as a quadratic in sin(x): (2sin(x) + 1)(3sin(x) + 4) = 0
To find the solutions, we set each factor equal to zero: 2sin(x) + 1 = 0 or 3sin(x) + 4 = 0
For the first equation, subtract 1 from both sides: 2sin(x) = -1
Divide both sides by 2: sin(x) = -1/2
For the second equation, subtract 4 from both sides: 3sin(x) = -4
Divide both sides by 3: sin(x) = -4/3
Now, we need to find the values of x that satisfy these equations. Using a unit circle or a calculator, we find that the solutions for sin(x) = -1/2 are x = 7π/6 + 2πn and x = 11π/6 + 2πn, where n is an integer.
For sin(x) = -4/3, there are no solutions since the sine function's range is between -1 and 1.
Therefore, the solutions to the equation 6sin^2(x) + 14sin(x)cos(x) + 4 = 0 are: x = 7π/6 + 2πn or x = 11π/6 + 2πn, where n is an integer.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
