
16*8^(2+3x)=1


Ответы на вопрос

2^4*2^3(2+3x)=2^0
2^(4+3(2+3x))=2^0
(4+3(2+3x))=0
4+6+9x=0
9x=-10
x=-10/9



To solve the equation 16 * 8^(2 + 3x) = 1, we'll follow these steps:
Step 1: Simplify the equation Step 2: Solve for x
Let's go through each step:
Step 1: Simplify the equation
We can simplify the equation by applying the exponent rule that states a^(b + c) = a^b * a^c.
16 * 8^(2 + 3x) = 1
Since 16 is a power of 2 (2^4), we can rewrite it as:
(2^4) * 8^(2 + 3x) = 1
Using the exponent rule, we have:
2^(4 * (2 + 3x)) = 1
Simplifying further:
2^(8 + 12x) = 1
Step 2: Solve for x
To solve for x, we'll take the logarithm of both sides of the equation with base 2. This will allow us to eliminate the exponent.
log2(2^(8 + 12x)) = log2(1)
Using the logarithm rule log_a(a^b) = b, we have:
(8 + 12x) * log2(2) = 0
log2(2) is equal to 1, so the equation becomes:
8 + 12x = 0
Next, we'll isolate the variable x by subtracting 8 from both sides:
12x = -8
Finally, divide both sides by 12 to solve for x:
x = -8/12
Simplifying the fraction:
x = -2/3
Therefore, the solution to the equation 16 * 8^(2 + 3x) = 1 is x = -2/3.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili