Вопрос задан 13.06.2018 в 08:28.
Предмет Алгебра.
Спрашивает Никитина Алисонька.
ПОМОГИТЕ РЕШИТЬ СРОЧНО!! 1) Исследуйте функцию у=2х*lnx на монотонность и экстремум 2)Найти угловой
коэффициент касательной к графику функции y=x^3+27 в точке пересечения этого графика с осью абсцисс.Ответы на вопрос
Отвечает Курганова Диана.
Решение
1) у=2х*lnx
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = 2 * ln(x) + 2
Находим нули функции.
Для этого приравниваем производную к нулю
2 * ln(x) + 2 = 0
ln(x) = - 1
Откуда:
x = e⁻¹
(-∞ ;e⁻¹) f'(x) < 0 функция убывает
(e⁻¹; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = e⁻¹ производная
функции меняет знак с (-) на (+).
Следовательно, точка x = e⁻¹ - точка минимума.
2) y = x³ + 27
Находим точку пересечения с осью абсцисс (y=0)
x³ + 27 = 0
x³ = - 27
x₀ = - 3
Находим производную производную функции
y'(x) = 3x²
угловой коэффициент касательной равен:
tg a = k= у'(x₀) = 3*(- 3)² = 27
Ответ: k = 27
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
