Вопрос задан 03.09.2020 в 14:23. Предмет Физика. Спрашивает Хайберды Арслан.

2. На тело вдоль вертикали действуют силы 10Н и 15Н, Изобразите эти силы, найдите равнодействующую.

Рассмотрите все варианты
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Forces Acting on the Body

When two forces act on a body along the vertical axis, with magnitudes of 10N and 15N respectively, we can represent these forces as vectors. Let's denote the force of 10N as F1 and the force of 15N as F2.

To visualize these forces, we can draw arrows representing their magnitudes and directions. The length of the arrow represents the magnitude of the force, and the direction of the arrow represents the direction of the force.

Let's draw the arrows for the forces F1 and F2:

- The arrow for F1 will have a length of 10 units and will point downwards. - The arrow for F2 will have a length of 15 units and will also point downwards.

Now, let's find the resultant force, also known as the equilibrant or the net force, which represents the combined effect of these two forces.

Finding the Resultant Force

To find the resultant force, we need to add the two forces vectorially. This can be done by placing the tail of the second vector at the head of the first vector and drawing a line from the tail of the first vector to the head of the second vector. The resultant force is the vector that starts from the tail of the first vector and ends at the head of the second vector.

Let's calculate the resultant force:

- The magnitude of the resultant force can be found using the Pythagorean theorem, which states that the square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides. In this case, the two sides are the magnitudes of F1 and F2. - The direction of the resultant force can be found using trigonometry. We can use the inverse tangent function to find the angle between the resultant force and the vertical axis.

After calculating the magnitude and direction of the resultant force, we can draw an arrow representing the resultant force.

Visual Representation

Here is a visual representation of the forces and the resultant force:

``` F2 (15N) | | | | | | F1 (10N) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос