
Грузовик движущийся прямолинейно со скоростью 72 км ч начал торможение. Какой путь пройдёт он до
остановки, если торможении идёт вот с постоянным ускорением - 2,5 м с в квадрате

Ответы на вопрос

Для решения этой задачи мы можем использовать уравнение движения с постоянным ускорением, которое связывает начальную скорость \( v_0 \), конечную скорость \( v \), ускорение \( a \) и расстояние \( s \):
\[ v^2 = v_0^2 + 2as \]
В данном случае грузовик движется прямолинейно со скоростью 72 км/ч, что можно перевести в метры в секунду:
\[ v_0 = 72 \, \text{км/ч} \times \frac{1000 \, \text{м}}{1 \, \text{км}} \times \frac{1 \, \text{ч}}{3600 \, \text{сек}} \]
Рассматривается торможение, так что конечная скорость \( v \) равна 0 м/с. Ускорение \( a \) равно -2,5 м/с², так как торможение.
Теперь мы можем вставить известные значения в уравнение:
\[ 0 = (72 \times \frac{1000}{3600})^2 + 2 \times (-2,5) \times s \]
Решив это уравнение относительно \( s \), мы найдем расстояние, которое грузовик пройдет до полной остановки.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili