Вопрос задан 10.05.2019 в 23:44. Предмет Физика. Спрашивает Маркевич Полина.

Из медной проволоки длиной 6,28 м и площадью сечения 0,5 мм^2 сделано кольцо. Чему равна индукция в

центре кольца, если разность потенциалов на концах проволоки 3,4 В?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Демидов Максим.

в центре кольца В=uoI/2пr

радиус кольца r=l/2п=6.28/2*3.14=1 м

закон ома I=U/R

R=pL/S - сопротивление проволоки,  pмеди=0.0175 ом*мм2/м

R=0.0175*6.28/0.5=0.22 Ом

сила тока в проволоке I=3.4/0.22 = 15.5A

тогда B=4п*10^-7*6.28/2п*1=12.56*10^-7 Тл

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Magnetic Induction in the Center of the Ring

To calculate the magnetic induction in the center of the ring, we can use the formula:

B = (μ₀ * I) / (2π * r)

Where: - B is the magnetic induction in Tesla (T) - μ₀ is the permeability of free space, which is approximately 4π × 10^(-7) T·m/A - I is the current flowing through the wire in Amperes (A) - r is the radius of the ring in meters (m)

In this case, we are given a copper wire with a length of 6.28 m and a cross-sectional area of 0.5 mm². However, we need the radius of the ring to calculate the magnetic induction. Unfortunately, the given information does not provide the necessary details to directly calculate the radius.

If you have any additional information about the dimensions or shape of the ring, please provide it so that we can assist you further.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос