Вопрос задан 07.05.2019 в 14:07. Предмет Физика. Спрашивает Михайлова Нина.

ФИЗИКА СРОЧНО! Два одинаковых заряженных шарика взаимодействую с силой F. 1)Как изменится сила их

взаимодействия,если расстояние между ними уменьшить в два раза? 2)Как изменится сила их взаимодействия,если заряды шариков уменьшить в 3 раза?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Нафанова Полина.
1)Как изменится сила их взаимодействия,если расстояние между ними уменьшить в два раза?
F=kq1*q2/r². F1=kq1*q2/(r/2)²= kq1*q2*4/r²=4F. Сила увеличится в 4 раза.
2)Как изменится сила их взаимодействия,если заряды шариков уменьшить в 3 раза?
F=kq1*q2/r². F1=k(q1/3)*(q2/3)/(r)²= kq1*q2*4/(9r²)=F/9. Сила уменьшится в 9 раз.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Interaction between Charged Spheres

When two charged spheres interact, the force of interaction between them depends on the distance between the spheres and the magnitude of their charges. Let's address each question separately:

1) How will the force of interaction change if the distance between the spheres is reduced by a factor of two?

According to Coulomb's Law, the force of interaction between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as:

F ∝ (q1 * q2) / r^2

Where F is the force of interaction, q1 and q2 are the charges of the spheres, and r is the distance between them.

If the distance between the spheres is reduced by a factor of two, the new distance (r') will be half of the original distance (r). Substituting this into the equation, we get:

F' ∝ (q1 * q2) / (r'/2)^2

Simplifying the equation, we find:

F' ∝ (q1 * q2) / (r^2 / 4)

F' = 4 * (q1 * q2) / r^2

Therefore, when the distance between the spheres is reduced by a factor of two, the force of interaction between them will increase by a factor of four.

2) How will the force of interaction change if the charges of the spheres are reduced by a factor of three?

Using Coulomb's Law, we can express the force of interaction between two charged objects as:

F ∝ (q1 * q2) / r^2

If the charges of the spheres are reduced by a factor of three, the new charges (q1' and q2') will be one-third of the original charges (q1 and q2). Substituting this into the equation, we get:

F' ∝ (q1'/3 * q2'/3) / r^2

Simplifying the equation, we find:

F' ∝ (q1 * q2) / (3^2 * r^2)

F' = (1/9) * (q1 * q2) / r^2

Therefore, when the charges of the spheres are reduced by a factor of three, the force of interaction between them will decrease by a factor of nine.

Please note that these calculations assume that the charges and distances are the only factors affecting the force of interaction between the spheres. In reality, there may be other factors to consider, such as the presence of other charges or the influence of surrounding materials.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос