
В ванну налили и смешали 50л воды при температуре 15 градусов и 30л воды при температуре 75
градусов. Какой станет температура в ванне после установления теплового равновесия, если потерями тепла пренебречь ?

Ответы на вопрос

т1=15*с
м2=30л
т2=75*с
найти-т3
решение по формуле-т3=с2*т2+с1*т1поделить на с1+с2.С1 і С2 ето 4200 дж_
кг**с



Calculation of Final Temperature
To calculate the final temperature of the water in the bathtub after mixing, we can use the principle of conservation of energy. The total heat gained by the cold water is equal to the total heat lost by the hot water. We can express this as:
Heat gained by cold water = Heat lost by hot water
The heat gained or lost by a substance can be calculated using the formula:
Q = mcΔT
Where: - Q is the heat gained or lost - m is the mass of the substance - c is the specific heat capacity of the substance - ΔT is the change in temperature
In this case, we have two quantities of water with different temperatures. Let's assume the specific heat capacity of water is 4.18 J/g°C.
1. Calculation for the cold water: - Volume of cold water = 50 liters - Mass of cold water = volume × density of water - Density of water = 1 g/mL - Mass of cold water = 50 liters × 1 g/mL = 50,000 grams - Initial temperature of cold water = 15°C - Final temperature of cold water = ? - Heat gained by cold water = mcΔT
2. Calculation for the hot water: - Volume of hot water = 30 liters - Mass of hot water = volume × density of water - Density of water = 1 g/mL - Mass of hot water = 30 liters × 1 g/mL = 30,000 grams - Initial temperature of hot water = 75°C - Final temperature of hot water = ? - Heat lost by hot water = mcΔT
Since the heat gained by the cold water is equal to the heat lost by the hot water, we can set up the equation:
mcΔT(cold) = mcΔT(hot)
Now we can substitute the known values into the equation and solve for the final temperature.
Calculation:
50,000 grams × 4.18 J/g°C × (final temperature - 15°C) = 30,000 grams × 4.18 J/g°C × (75°C - final temperature)
Simplifying the equation:
209,000(final temperature - 15) = 125,400(75 - final temperature)
Expanding the equation:
209,000(final temperature) - 3,135,000 = 9,405,000 - 125,400(final temperature)
Rearranging the equation:
209,000(final temperature) + 125,400(final temperature) = 9,405,000 + 3,135,000
Combining like terms:
334,400(final temperature) = 12,540,000
Solving for the final temperature:
final temperature = 12,540,000 / 334,400 ≈ 37.5°C
Therefore, the final temperature of the water in the bathtub after mixing will be approximately 37.5°C.
Please note that this calculation assumes no heat loss to the surroundings and that the specific heat capacity of water remains constant over the temperature range.


Топ вопросов за вчера в категории Физика







Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili