Вопрос задан 27.02.2019 в 08:25. Предмет Физика. Спрашивает Казакова Виктория.

Сколько времени потребуется для точки 10т волы из шахты , если мощность насоса 1,5кВт? Высота

подъема волы 20м
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Hremaliuk Lenuța.
N=A/t=mgh/t
A=mgh
t=A/N
t=mgh/N=10 000 кг*10 Н/кг*20 м/1500 Вт=1333 с
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения времени, необходимого для поднятия 10 тонн воды из шахты с использованием насоса мощностью 1,5 кВт и высотой подъема 20 м, можно воспользоваться формулой:

\[ \text{Работа} = \text{Масса} \times \text{Ускорение свободного падения} \times \text{Высота} \]

Мощность насоса может быть выражена как:

\[ \text{Мощность} = \frac{\text{Работа}}{\text{Время}} \]

Сначала найдем работу:

\[ \text{Работа} = \text{Масса} \times g \times h \]

где: - \(\text{Масса} = 10 \, \text{т} = 10000 \, \text{кг}\) (1 тонна = 1000 кг) - \(g = 9,8 \, \text{м/с}^2\) (ускорение свободного падения) - \(h = 20 \, \text{м}\) (высота подъема)

\[ \text{Работа} = 10000 \, \text{кг} \times 9,8 \, \text{м/с}^2 \times 20 \, \text{м} \]

Теперь найдем время, используя формулу для мощности:

\[ \text{Мощность} = \frac{\text{Работа}}{\text{Время}} \]

\[ \text{Время} = \frac{\text{Работа}}{\text{Мощность}} \]

\[ \text{Время} = \frac{10000 \, \text{кг} \times 9,8 \, \text{м/с}^2 \times 20 \, \text{м}}{1,5 \, \text{кВт}} \]

Теперь проведем вычисления:

\[ \text{Работа} = 10000 \, \text{кг} \times 9,8 \, \text{м/с}^2 \times 20 \, \text{м} = 1,960,000 \, \text{Дж} \]

\[ \text{Время} = \frac{1,960,000 \, \text{Дж}}{1500 \, \text{Вт}} = 1306,67 \, \text{с} \]

Таким образом, время, необходимое для поднятия 10 тонн воды из шахты с использованием насоса мощностью 1,5 кВт и высотой подъема 20 м, составляет примерно 1306,67 секунд или около 21,78 минут.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос