Вопрос задан 19.02.2019 в 15:11. Предмет Физика. Спрашивает Кот Арсений.

Два велосипедиста, находясь в противоположных точках А и В велотрека, одновременно начали движение,

стремясь догнать своего соперника. Сколько кругов проедет каждый велосипедист до того момента времени, когда один из них догонит другого, если отношение их скоростей v1/v2 = 62/61 ? (распишите подробно плз)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петрова Кюннэй.
Предположим что второй велосипедист проехал 61 круг, а первый 62.
То первый проехал на один круг больше.
То есть ему надо проехать лишних пол круга.
Значит не 62 круга , а 62/2= 31
То есть догонит на 31 круге.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, нам необходимо учесть отношение скоростей велосипедистов и определить, сколько кругов каждый из них проедет до момента, когда один из них догонит другого.

Пусть v1 и v2 - скорости первого и второго велосипедистов соответственно. По условию задачи, отношение их скоростей равно v1/v2 = 62/61.

Для решения задачи, мы можем использовать принцип относительности скоростей. Представим, что один из велосипедистов стоит на месте, а второй движется со скоростью v1 - v2. В этом случае, отношение скоростей будет равно v1/(v1 - v2) = 62/61.

Теперь мы можем использовать это отношение скоростей для определения, сколько кругов каждый велосипедист проедет до момента, когда один из них догонит другого.

Пусть n1 и n2 - количество кругов, которые проедет первый и второй велосипедисты соответственно.

Тогда, отношение пройденных расстояний будет равно n1/n2 = v1/v2 = 62/61.

Мы знаем, что количество пройденных расстояний пропорционально количеству кругов, поэтому отношение количества кругов будет также равно n1/n2 = 62/61.

Теперь мы можем найти значения n1 и n2, используя это отношение.

Решение:

Пусть n1 - количество кругов, которые проедет первый велосипедист, и n2 - количество кругов, которые проедет второй велосипедист.

Тогда, отношение количества кругов будет равно n1/n2 = 62/61.

Мы можем представить это отношение в виде дроби и упростить его:

n1/n2 = 62/61

Умножим обе части уравнения на 61n2:

n1 = 62n2

Теперь мы можем найти значения n1 и n2, зная, что они должны быть целыми числами.

Один из возможных вариантов решения - это выбрать n2 = 61, тогда n1 = 62 * 61 = 3782.

Таким образом, первый велосипедист проедет 3782 круга, а второй велосипедист проедет 61 круг до того момента, когда первый велосипедист догонит его.

Ответ:

Первый велосипедист проедет 3782 круга, а второй велосипедист проедет 61 круг до того момента, когда один из них догонит другого.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос